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Abstract 
Background Agricultural systems are under extreme pressure to meet the global food demand, hence necessitating 
faster crop improvement. Rapid evaluation of the crops using novel imaging technologies coupled with robust image 
analysis could accelerate crops research and improvement. This proof-of-concept study investigated the feasibility 
of using X-ray imaging for non-destructive evaluation of rice grain traits. By analyzing 2D X-ray images of paddy 
grains, we aimed to approximate their key physical Traits (T) important for rice production and breeding: (1) T1 
chaffiness, (2) T2 chalky rice kernel percentage (CRK%), and (3) T3 head rice recovery percentage (HRR%). In the future, 
the integration of X-ray imaging and data analysis into the rice research and breeding process could accelerate 
the improvement of global agricultural productivity.

Results The study indicated, computer-vision based methods (X-ray image segmentation, features-based multi-linear 
models and thresholding) can predict the physical rice traits (chaffiness, CRK%, HRR%). We showed the feasibility 
to predict all three traits with reasonable accuracy (chaffiness:  R2 = 0.9987, RMSE = 1.302; CRK%:  R2 = 0.9397, 
RMSE = 8.91; HRR%:  R2 = 0.7613, RMSE = 6.83) using X-ray radiography and image-based analytics via PCA based 
prediction models on individual grains.

Conclusions Our study demonstrated the feasibility to predict multiple key physical grain traits important in rice 
research and breeding (such as chaffiness, CRK%, and HRR%) from single 2D X-ray images of whole paddy grains. Such 
a non-destructive rice grain trait inference is expected to improve the robustness of paddy rice evaluation, as well 
as to reduce time and possibly costs for rice grain trait analysis. Furthermore, the described approach can also be 
transferred and adapted to other grain crops.
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Background
!e shortage of food crops production is likely to escalate 
in the decades to come, facing the projected population 
growth and progressing climatic changes. !e major sta-
ple food crops providing the base of the global diets and 
carbohydrates intake are cereals—namely maize, rice and 
wheat. For these crops, the yearly production improve-
ment is marginal (< 1%; i.e. < 100  kg/ha [1, 2]). One of 
the important drivers of crops productivity in modern 
agriculture relies on crops research, that is expected to 
innovate the crop production methodologies to produce 
more food from less land and input. To achieve this, the 
agricultural research, particularly breeding, must signifi-
cantly accelerate [3–5]. Despite of the rapid technologi-
cal advancements, the accurate evaluation of thousands 
of potential new cultivars for the traits driving the mar-
ketable yield (e.g., related to success of the grain filling) 
and its quality (e.g., physical properties and biochemical 
composition of the grains) required in breeding process 
is still a challenge [6–10]. In the case of rice—as well as 
other crops having small and tightly husked kernels as, 
e.g., barley, oats, some millets, sunflower, or peanuts—
the process of grain evaluation also includes the removal 
of husk (“de-husking”), which is not only time and cost 
intensive and destructive, but could be also the source of 
errors in evaluations [11, 12].

As witnessed in other disciplines, novel fit-for-purpose 
technologies can progressively bridge the gaps in knowl-
edge and enhance the effectiveness of processes including 
agricultural research and crop improvement [13, 14]. For 
this, a wide array of non-destructive, sensor-based tech-
nologies are now available to evaluate various crop traits 
[15, 16]. !ese technologies have the potential to make 
the crops evaluation process more robust and improve 
its time and cost efficiency. In the case of rice breeding, 
three structural and physical grain traits are usually con-
sidered—e.g. grain chaffiness, chalky rice kernel percent-
age (CRK%) and head rice recovery percentage (HRR%). 
For each of these traits, different types of image-based 
technologies are being utilized e.g., near-infrared (NIR) 
sensors, standard RGB cameras, hyperspectral imag-
ing, or nuclear magnetic resonance (NMR). Nonethe-
less, most of these imaging methods require the paddy 
rice to be de-husked and several different sensors need 
to be used [17]. Another challenge is that these image-
based approaches typically generate a vast amount of 
spatial–temporal information (i.e., typically Terabytes of 
information in multiple dimensions), which must then be 
effectively analyzed. !erefore, one bottleneck to intro-
duce such novel technologies in practical research is also 
linked to the challenges of high-volume data analysis and 
timely interpretation.

Among the imaging technologies being already in 
use for rice-grain evaluation, X-ray imaging is rarely 
being discussed [18–22], although its advantages for 
the non-destructive evaluation of multiple physical rice 
grain properties as well as the evaluation of internal 
grain structure is evident [11]. In fact, it has been 
well-demonstrated with the new generation of high-
resolution X-ray [23] or portable computed tomography 
(CT) systems (as e.g., the CT portable series system 
from the Fraunhofer EZRT1), that it is possible to skip 
the destructive part of grain evaluation for, e.g., in 
wheat [24] and peanuts [25]. !erefore, in this proof-
of-concept study we will check whether the X-ray 
imaging technology has matured sufficiently enough to 
substitute and enhance key steps in rice grain evaluation. 
To demonstrate the approach, we have chosen three 
important physical grain traits (T) in rice breeding 
programs (visualized in Fig. 1):

(T1) “chaffiness”, the number of empty grains or grains 
with damaged or aborted embryos,

(T2) “chalky rice kernel percentage” (CRK%), kernels 
having a proportion of opaque, white, chalk like area and

(T3) “head rice recovery percentage” (HRR%), the per-
centage of unbroken kernel mass recovered after milling 
and polishing the grains.

Materials and methods
!e diverse rice grain material for the study and the 
ground truth measurements were generated using 
methodologies typically used for the paddy rice 
evaluation (Sect.  “Rice grain material and ground 
truth measurements”). Section  “X-ray radiography” 
describes the standardization of X-ray imaging process 
for paddy grain, while the structural and physical paddy 
grain properties inference from the X-ray images is 
detailed in Sect.  “Image treatment, features extraction 
and trait inference algorithms”. Since the ground truth 
measurements, imaging and image analysis were different 
for each trait, individual sub-sections describe these 
procedures for each trait separately. Figure  2 illustrates 
the workflow of these consecutive steps organization of 
each section.

Rice grain material and ground truth measurements
!e rice cultivars’ selection was based on prior knowledge 
of their features and representing a sufficient range of the 
target traits variability. Altogether, 21 rice cultivars with 
different grain sizes and shapes were considered in the 
study: (a) long and slender; (b) short and bold (c) short 
and slender. Out of all cultivars, 6 were selected to assess 

1 https:// www. iis. fraun hofer. de/ en/ ff/ zfp/ produ cts/ ctpor table. html

https://www.iis.fraunhofer.de/en/ff/zfp/products/ctportable.html
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chaffiness, 21 for CRK% and 9 cultivars for HRR%. All 
selected whole-grain samples (“paddy rice”) were imaged 
using 2D X-ray projections (Sect.  “X-ray radiography”) 
and the ground truth was generated as per the protocols 
typically used in the breeding pipelines such as the one 
used in this proof-of-concept study (Fig. 3).

T1: Cha!ness
“Chaffiness” (number of empty grains or aborted or 
damaged kernels) is the count of those grains which are 
either fully empty, the embryo has been aborted early in 
its development or damaged (e.g. by pests). Chaffiness 
indicates the success of pollination process and grain 
yield [12]. To generate ground-truth in our study, we 
spread the paddy grains on the lightning board and visu-
ally counted the chaffy grains (Fig. 3). !e final chaffiness 
score (“chaffy”/“non-chaffy”) was based on the agree-
ment of three different experts (method inspired by [26]).

T2: Chalky rice kernel percentage (CRK%)
Chalky rice kernels can be visually identified after milling 
as those having a proportion of opaque, white, chalk like 
area in different parts of the kernel [27–29]. In our case, 
the ground truth CRK% measurements were estimated 
on de-husked kernels using an automated optical system 
(Vibe QM3 image analyzer, Vibe Imaging Analytics Ltd., 
USA, Fig. 3). !is system evaluated each grain separately 
for the kernel translucence and considered the kernels 
with > 20% opaque area as chalky ones. Consequently, it 
calculated the proportion of chalky kernels in the sample 
(number of chalky kernels/total number of the kernels). 
Because the milling cannot be performed on a sin-
gle grain level, in a first step, the single grains were first 
scanned, then manually de-husked, re-scanned, and the 
differences between these scans were used to adapt cor-
relations with the X-ray images on un-husked rice paddy 
grains (Sect. “T1: Chaffiness”).

Fig. 1 The left side of the figure (A) illustrates the methods typically required to evaluate rice grains (e.g. in rice breeding) for three rice grain 
properties “chaffiness”, “chalky rice kernel percentage” (CRK%), and “head rice recovery percentage” (HRR%). Whereas the right side of the figure (B) 
shows the steps involved and potential advantages if the proposed X-ray based solution would be used
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T3: Head rice recovery (HRR%)
Head rice recovery percentage (HRR%) indicates the 
success of the industrial milling process, namely the 
recovery of polished rice kernels mass compared 
to the mass of raw paddy rice material. In our study, 
we used a milling machine (Zaccaria rice machine—
Type PAZ-1-DTA, Zaccaria, Brazil; Fig.  3) which was 
specifically developed to evaluate HRR%. Since grain 
humidity does affect the milling process [30], all the 
samples were dried to moisture content of 12—14% 
before milling. The Zaccaria milling machine requires 
a minimum of 20 g of paddy rice, precise settings and 
a skilled operator for reliable measurements. In our 
case, the pre-weighted 20  g of paddy rice was milled 
and polished for 1.25  min. After milling, the fraction 
of polished grains (grains retaining more than 75% of 
the original length) was automatically separated by the 
machine and then manually inspected and cleaned. 
Afterwards, only the polished grains were weighted. 
The HRR% was calculated as follows:

where Wpg is the weight of the polished grains retain-
ing more than 75% grain length and Wop is the weight of 
original paddy weight.

X-ray radiography
All X-ray images were obtained using a micro-CT system 
(“CTportable160.90”, developed by the “Development 
Center X-Ray Technology” (EZRT) of the Fraunhofer 
Institute of Integrated Circuits IIS, Fürth, Germany). !e 
system can be obtained commercially via system integra-
tors (e.g. PhenoKey, NL). !e micro-CT system consists 
of an X-ray source with acceleration voltages U from 30 
to 90 kV, and acceleration currents I from 50 up to 160 
µA. !e X-ray detector has an active area of 2304 × 1300 
pixels with a pixel size of 49.5 %m2 and allows to select 
the acquisition time t of each individual image between 
100–1000 ms. !e sample stage between the X-ray source 
and the detector can be positioned with a minimum 

HRR% =

(

Wpg/Wop
)

∗ 100,

Fig. 2 Overview of the methodological framework: The chart illustrates the logical sequence of steps (from left to right) followed in this study 
which are detailed in Sect. “Results”. From the left, these include description of the rice grain structure, diverse rice grain material and generation 
of ground truth measurements (Sect. “Rice grain material and ground truth measurements”), standardization of the paddy grain X-ray imaging 
process (Sect. “X-ray radiography”) and the image based structural and physical paddy grain traits inference (Sect. “Image treatment, features 
extraction and trait inference algorithms”)
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focus object distance (FOD) of fmin = 16 mm and a maxi-
mum FOD of fmax = 285  mm, resulting in a maximum 
resolution of about 2.8 %m. !e detector includes a 14-bit 
CMOS sensor (Teledyne DALSA Shad-o-Box  3  K HS) 
featuring a direct-contact Gd2O2S scintillator (Kodak 
Min-R 2190) foil. !e detector was positioned at a focus 
detector distance (FDD) of fFDD = 296  mm. !e system 
functionalities were controlled by the software Volex10 
(Fraunhofer IIS, Germany2). More technical details of the 
X-ray imaging system can be found in [31].

In this initial proof-of-concept stage, rice grains were 
scanned in a structured way to ease the image processing. 
For this, sample holder was hand-crafted out of extruded 
polystyrene (eps; material with minimum attenuation 
factor, see the Figs.  6, 7, 8). Using such sample holder, 
more than 100 individual grains (~ 3–5 g) could be posi-
tioned inside the fixed grid in less than 5 min and conse-
quently scanned in less than one minute. !is procedure 
allowed us to inspect and evaluate properties of individ-
ual grains non-destructively. Several combinations of the 
scanning parameters (U, I, t, fFOD) were tuned to achieve 

images suitable for the features extractions for each trait 
separately (Table 1).

!e experiments for Chaffiness were conducted with a 
suitable magnification (M) of approximately 1 (M =  fFOD/
fFDD). However, for the subsequent experiments on 
CRK% and HRR% we realized that the magnification and 
thus the resolution in the 2D X-ray radiographs was not 
sufficient and we increased the magnification to about 
1.8 and realized a resolution of about 27  µm per pixel. 
Additionally, we lowered the voltage settings to 35  kV 
to increase the sensitivity and the absorption of X-ray 
photons in the grains. !e throughput for the new images 
was about a factor of 2 smaller in the measurement time. 

Fig. 3 Different methods of acquiring the ground truth data for the three traits  T1 Chaffiness—(A) manual counting using lightning board, 
 T2 CRK%—(B) using VIBE scanner and software and  T3 HRR%—(C) using Zaccaria milling machine. It should be noted that the  T2 and  T3 rely 
on de-husking and destructive analysis which had implications for generating inference algorithms for non-destructive X-ray based evaluation 
of whole grains

Table 1 Parameter settings of the X-ray system for target traits: 
chaffiness, CRK% and HRR%

Setting Cha"ness  (T1) CRK%  (T2) HRR%  (T3)

Voltage U [kV] 60 35 35

Current I [µA] 103 160 160

Acquisition time t [ms] 300 600 600

Focus object distance  fFOD 
[mm]

285 161 161

2 https:// www. iis. fraun hofer. de/ en/f/ zfp/ produ cts/ volex 10

https://www.iis.fraunhofer.de/en/f/zfp/products/volex10
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However, the measurement time of 0,3 compared to 
0,6 s per scan was neglectable compared to the times for 
sample change and sample preparation. !is is because 
a general-purpose micro-CT setup was used for this 
feasibility study, the final definition of throughput will be 
determined in later stages of technological development 
with hardware components and sample positioning 
especially tuned and selected for this purpose.

With these tuned settings, we could generate the 
required X-ray images for CRK% and HRR%. In general, 
also Chaffiness can be analyzed with increased resolution 
and lowered voltage setting.

T1: Cha!ness
!e prediction algorithms were defined for 11 X-ray 
images annotated by experts. Consequently, 45 
radiographs of real-situation grain samples were obtained 
(15 of each group: long and slender; short and bold and 
short and slender; altogether 1755 grains) for evaluation 
of prediction algorithms (Fig.  4). Figure  6A for X-ray 
images with rice grains depicted for chaffiness.

T2: Chalky rice kernel percentage (CRK%)
To construct the CRK% prediction algorithms, it was 
necessary to define the chalky matter on de-husked 
kernels first. Since each kernel could include different 
proportions of chalky matter, we visually hand-picked 
the kernels with maximum/minimum chalky areas (fully 
translucent/fully opaque) in the representative rice kernel 

types (long/short, slender/bold) and consequently tuned 
the scanning protocol for de-husked chalky and non-
chalky kernels to magnify the differences between these 
two classes (scanning parameters in Table  1). We used 
14 different X-ray images (117 handpicked chalky and 
126 non-chalky kernels) to develop the CRK% prediction 
algorithms (and Fig. 7B for X-ray images with rice grains 
picked for chalky rice kernel percentage). Additionally, 
paddy grains from 6 images were individually 
manually de-husked and re-imaged to validate the 
scanning parameters and the “virtual de-husking” 
algorithms (Sect.  “T2: Chalky rice kernel percentage”). 
Consequently, leveraging our prior knowledge of 
cultivars (outlined in Sect.  “Rice grain material and 
ground truth measurements”), we utilized 20 radiographs 
each of low-chalky cultivars (20 images) and high-chalky 
cultivars (20 images) to test the prediction algorithm 
(described in Sect. “T2: Chalky rice kernel percentage”). 
Altogether, employing this setup involved capturing 46 
X-ray images (2 × 20 + 1 × 6) of paddy rice grains, totaling 
2120 grains (Fig. 4).

T3: Head rice recovery percentage (HRR%)
HRR% is an aggregate of several grain traits including 
the matter partitioning between husk and kernel, grain 
and kernel size and shape, grain fragility (inclusive of 
CRK% “factors” and grain breakages). Technically, sin-
gle grain HRR% cannot be determined because the mill-
ing machine (Zaccaria, Sect.  “T3: Head Rice Recovery 

Fig. 4 Overview of numbers of cultivars (c), X-ray images and grains used for the development of trait prediction algorithms for the three traits (T): 
 T1 chaffiness (2.1.1),  T2 chalky rice kernel % (CRK%, 2.1.2) and  T3 head rice recovery % (HRR%,2.1.3)
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(HRR%)”) requires minimum 20  g of grain to reliably 
resemble the milling process (i.e. a single ground truth 
point represents bulk of grains). As CRK% was expected 
to play the role in HRR%, the same scanning parameters 
as for CRK% were used for HRR% (listed in Table 1, also 
Fig. 8B for X-ray images obtained for head rice recovery 
percentage). For the HRR% analysis, altogether, 9 dif-
ferent cultivars were assessed (90 scans, 30 grains per 
scan, each cultivar measured 5 times, Fig. 4) for manual 
ground truth measurements. Each of these samples were 
split into two sub-samples (minimum 20 g each) and the 
ground-truth HRR% was destructively measured by the 
Zacharia mill for each subsample (Sect.  “T3: Head rice 
recovery percentage”).

Image treatment, features extraction and trait inference 
algorithms
Each of the X-ray radiographs (Sect. “X-ray radiography”) 
was pre-processed in the following steps (Fig. 5):

1. Image normalization Fig. 5(4) was used to bring all 
acquired radiographs in the same grey-scale level 
range to be comparable to each other and at the same 
time correct for the exponential attenuation accord-
ing to the equation for attenuation of Lambert–Beer. 
For normalization, the following equation is used:

where Io is the background intensity of the original X-ray 
image I Fig. 5(1). !e value of Io is gained from the grey 
value histogram Fig. 5(2) of each individual X-ray image. 

Icorr = −ln (I/Io),A

Fig. 5 Workflow and image processing steps to extract grain features (9) for the PCA analysis (10) from X-ray images (1). The main steps 
include the computation of the histogram (2) and from that the identification of the gray value  I0 with maximum occurrence (3). Combing  I0 
with the original image I, image normalization (4) can be achieved. Using a dual watershed approach (6) yields a ‘blob’ (= binary large object) 
for each grain. To eliminate small single pixels and fill some remaining holes in the blobs (noise), a morphological closing is applied to the blobs 
(7). Finally for each detected grain an individual image object  Oi is identified (8). From each of these objects  Oi, a descriptive vector f =  (f1,  f2,  f3, …, 
 fn)T is extracted (9) and normalized (10), which in turn are used to compute is the corresponding PCA model (11), the Mahalanobis Distance (12) 
and SVMs (13,14)



Page 8 of 15Tharanya et al. Plant Methods           (2025) 21:94 

Within this histogram the grey value with the highest 
number of occurrences is used for Io Fig. 5(3). Due to the 
design of the sample holder most of the area at the detec-
tor was not covered with individual seeds, thus the most 
prominent grey value in the histogram is the one corre-
sponding to the unattenuated background intensity.

 2. For single grain segmentation a variation com-
monly known as a blob-analysis [32] was made, 
consisting of a dual water shedding [33] approach 
Fig. 5(6) for individual rice grain detection as well 
as foreground and background separation, fol-
lowed by a classical morphological erosion-dilation 
combination (sometimes referred in the literature 
as”opening”) [34] to remove single pixels due to 
noise Fig. 5(7).

 3. After the individual areas/segments S that corre-
sponded to rice grains were segmented from the 
image background Fig.  5(8), several image-based 
features f = (f1, …, f8)T (being the descriptors of 
segmented regions S within the image) were com-
puted for each segment of a rice grain separately 
Fig. 5(9):

 4. f1 = Grain size: size of the segment S in pixels 
(which can be converted to  mm2)

 5. f2 = Mean value: Mean grey value of the pixels in 
the segment S

 6. f3 = Weight: Virtual weight as a sum of normalized 
grey values within the segment S

 7. f4 = Standard deviation: Standard deviation of the 
grey values of the segment S

Fig. 6 The key parts of the process required to build the”chaffiness” prediction model from the X-ray radiographs of paddy grains. A illustrates 
the sample in the sample holder and the raw X-ray image while pointing out the chaffy and non-chaffy grains we intended to predict (ellipses). B 
shows the distribution of features of “chaffy” and “non-chaffy” rice grains image segments in the three-dimensional PCA-space (PC dimensions 1, 2 
and 3). Each of the dimensions in the plot represents a linear combination of the grain segments features  (f1, …,  f8)T and the individual data points 
correspond to the image segments S that represent individual grain by the 3D coordinate in the respective dimension. The 3D plot also shows 
the results of the classification using a Mahalanobis-distance of 17 as threshold %chaffy. The red data points are classified as “chaffy” and the green 
ones as “non chaffy” according to their distance to the point cluster. C shows the ranges of observed values estimated with standard methods 
(yellow) and the range of values predicted by the model (blue), (D) illustrates the agreement between the number of predicted and observed 
chaffy grains along with the standard goodness of the fit metrics (slope and intercept parameters of the linear regression,  R2 and RMSE)
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 8. f5 = Sphere radius: Radius of a circle, which has the 
same area as the segment S

 9. f6 = Average weight: #e average weight is a weight 
proxy multiplying the mean value with the sphere 
radius

 10. f7 = Minimum covering circle (MVC) radius: 
Radius of the minimum covering circle which 
encloses the segment S

 11. f8 = Sphere ratio/segment shape: #is is the ratio 
between the sphere radius f5 and the sphere MCS 
ratio f7. #e value is between 1 and 0. 1 relates to a 
circle-like shape, while 0 indicates the shape of an 
infinitive long ellipse.

 12. For each of the three trait prediction models (chaf-
finess, CRK%, HRR%) a subset of the image-based 
segments’ features f was selected based on their 
correlation to the ground truth trait measurements 
to build a grain trait prediction algorithm from 
X-ray image-based features (fx): #e impact of 
each feature (f1, …, f8)T on the correlation with the 
ground truth measurements was analyzed with a 

Principal Component Analysis (PCA), Fig.  5(11). 
Prior to the PCA, all image-based features were 
normalized using the Z-Transform (f’ = (f—µ)/σ) 
to be in the same numerical range Fig. 5(10). Con-
sequently, only the image-based features explain-
ing the significant portion of variation in the target 
ground truth trait values were selected and out of 
these the multi-linear regression model to corre-
late grain trait from combinations of image-based 
features was built. #is model helped to separate 
the image segments (that correspond to scanned 
rice grains) in the multi-dimensional PCA-space 
into individual classes based on the features of their 
X-ray image projections.

T1: Cha!ness
Rice chaffiness was defined as a binary property 
(Sect.  “T1: Chaffiness”; each grain was considered as 
either chaffy or non-chaffy). !erefore, to separate grains 
identified as “chaffy” from “non-chaffy” we needed to 

Fig. 7 The key parts of the process required to build the” CRK%” prediction model from the X-ray radiography of paddy grains. A, B visualizes 
the sample holder with chalky and non-chalky kernels (A) and whole grains (B) and corresponding sample in the raw X-ray image-sections,with 
ellipses pointing out the type of grains we intended to predict. The graphs in A and B points out the data distribution of “chalky” (green, orange) 
and “non-chalky” (red, blue) rice kernels (A) and grains (B) in the 3D PCA-space. The dimensions are the three principal components (PCs), which 
are linear combinations of the PCA input parameters f2, f3, f4, and f6. The depicted hyperplane (gray) is the optimum to divide between “chalky” 
and “non-chalky” kernels and is calculated by a support vector machine (SVM). (C) shows the ranges of observed values estimated with standard 
methods (yellow) and the range of values predicted by the model (blue) while (D) illustrates the agreement between predicted and observed 
values along with the standard goodness of the fit metrics (slope and intercept parameters of the linear regression,  R2 and RMSE)
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find such principal components that could separate 
them similarly based on the combinations of features 
extracted from their images in PCA-space Fig.  5(11). 
For the PCA, all extracted grain features (f1, …, f8)T were 
used as input. For further processing, the first three 
principal components (with a cumulated percentage of 
99,974%) were used to discriminate “chaffy” and “non-
chaffy” grains. !ese three PCAs were used to visualize 
the individual grains in a 3D plot Fig.  6B. Analysis of 
ground-truth data (Sect.  “T1: Chaffiness”) showed 
that “non-chaffy” and “chaffy grains” formed defined 
clusters in the 3D PCA-space Fig. 6B. !us, to separate 
the “chaffy” cluster from “non-chaffy” we had to find a 
threshold-distance, which described the border between 
the “chaffy” and the “non-chaffy” cluster. To achieve this, 
we used the Mahalanobis-distance [see Fig. 5(12)] which 
is an effective multivariate distance metric describing 
the distance between a point and a data distribution. 
!e data distribution is characterized by a mean and 
the covariance matrix and is thus hypothesized to be a 
multivariate Gaussian Fig. 6 [35]. !e threshold for this 

Mahalanobis distance was adjusted for the ground-truth 
scored by experts (Sect.  “T1: Chaffiness”) to achieve 
maximum agreement of predicted values with ground 
truth observations (correlation metrics: coefficient of 
determination  (R2), root mean squared error (RMSE)). 
!e obtained threshold θchaffy in the normalized PCA 
space was θchaffy = 17 (arbitrary unit).

T2: Chalky rice kernel percentage
!e CRK% inference algorithms were initially built 
for kernels (de-husked grains). To determine CRK% 
from X-ray images, we considered CRK% as a binary 
property, i.e. rice kernel was classified as “chalky” if it 
contained more than 20% matter defined as “chalky”, 
and vice versa (details in Sect.  “T2: Chalky rice kernel 
percentage (CRK%)”). Furthermore, we had to find 
suitable input parameters for the PCA Fig.  5(11) to 
separate the data points in the PCA-space. To this 
regard, a subset and combination of the following kernel 
image-based features were sufficient to explain the 
maximum variability in the ground truth observation: 

Fig. 8 The key parts of the process required to build the “head rice recovery percentage” (HRR%) prediction model from the X-ray radiographies 
of paddy grains. A visualizes the sample holder and an example of raw X-ray image. B illustrates the HRR% classification algorithm with the colors 
representing the probability of each grain belonging to a particular HRR% class. C shows the ranges of observed values estimated with standard 
methods and the range of values predicted by the model. D illustrates the agreement between predicted and observed values along with the 
standard goodness of the fit metrics (slope and intercept parameters of the linear regression,  R2 and RMSE)
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mean value (f2), standard deviation (f4), weight (f3) and 
averaged weight (f6) and were used as input parameters 
for the PCA. For analyzing the image-based kernel 
features in the PCA-space, the first three principal 
components were chosen. Furthermore, using the 
ground-truth estimates (Sect.  “T2: Chalky rice kernel 
percentage (CRK%)”) it was possible to separate the PCA 
coordinates representing the “chalky” and “non-chalky” 
kernel images with a hyperplane. !e hyperplane 
was calculated by a support vector machine [SVM, 
Fig.  5(13)] to achieve maximum agreement of inferred 
values with ground truth observations [correlation 
metrics: coefficient of determination  (R2), root mean 
squared error (RMSE)]. In the next step, the ground 
truth rice grain measurements were compared with the 
image-based predictions to optimize the classification 
hyperplane. Since the chalky kernel matter had to be 
finally defined on whole rice grain including husk, the 
consecutive prediction algorithms had to be adjusted 
for estimation of CRK% from the radiographs of whole 
grains with husk. !is adjustment has caused a shift 
in the data points’ coordinates in the PCA-space. To 
compensate for this shift, the “virtual de-husking” 
was introduced to adapt the PCA-parameters of each 
rice grain. To achieve this, first the mean differences 
between the PCA-parameter values of the ground-truth 
for kernels (without husk) and of grains (with husk) 
were calculated. !is variation was used to normalize 
the input parameters by subtracting the values from 
the grain data with husk for each grain before doing the 
PCA and SVM classification:

where p PCA, kernel represents the principal component 
analysis (PCA) value for rice kernel (de-husked grain), p 
PCA, grain denotes the PCA value for whole rice grain (with 
husk), µ (p PCA, GT) gives the mean PCA value for the 
ground truth, and µ (p PCA, grain) expresses the mean PCA 
value for whole rice grain (with husk).

!is “virtual de-husking” shifted the data points in the 
PCA-space and enabled the classification of the complete 
grains (“with husk”) using the prior determined SVM 
plane (Fig. 7).

T3: Head rice recovery percentage
Head rice recovery percentage (HRR%) was defined as 
a continuous property, which represented the ratio of 
unbroken head rice kernels recovered after grain milling. 
Unlike chaffiness and CRK%, HRR% ground truth cannot 
be estimated for individual grain. !us it was not possible 
to directly associate each grain to a cluster in the PCA-
space based on its features as it was done for chaffiness 

pPCA, kernel =pPCA, grain−

(

µ
(

pPCA, GT
)

−µ
(

pPCA, grain

))

and CRK%. First, we separated individual ground-truth 
measurements for each grain subset (i.e. 20  g of grains, 
Zaccaria milling method, Sect.  “T3: Head rice recovery 
percentage (HRR%)”). into five classes for the HRR%: 
“100% HRR%”, “80% HRR%”, “60% HRR%”, “40%” HRR% 
and “20% HRR%”. Consequently, we extracted and clus-
tered the features (f1, f3, f4, f5 and f7) of the individual 
scanned grains in the PCA space Fig. 5(11). !en, based 
on these features, we fitted the SVM plane [see Fig. 5(14)] 
that allowed to assign each individual grain such prob-
ability of belonging to the HRR% class that achieved 
maximum agreement with average of all grains used to 
generate that particular single HRR% ground truth point 
[correlation metrics: coefficient of determination  (R2), 
root mean squared error (RMSE)]. !en, the probabil-
ity (p) of the individual grain belonging to a particular 
HRR% class is predicted, e.g. p1 = 21% for “100% HRR%”, 
p2 = 18% for “80% HRR%”, p3 = 66% for “60% HRR%”, 
p4 = 75% for “40% HRR%”, and p5 = 35% for “20% HRR%”. 
!e most probable class max (p1, p2, p3, p4, p5) is then 
selected to predict HRR% of each individual grain. In this 
example the prediction would be p = “40% HRR%” with a 
reliability of prediction of 75%. !is means that this grain 
has the most likely HRR% of 40%. Doing so we were able 
to classify HRR% for each individual grain based on the 
ground truth values of a grain subset.

Results
21 diverse rice cultivars were selected to assess 
variability in three traits T1 = chaffiness (Sect.  “T1: 
Chaffiness”), T2 = CRK% (Sect.  “T2: Chalky rice kernel 
percentage (CRK%)”) and T3 = HRR% (Sect.  “T3: Head 
rice recovery percentage (HRR%)”). We established 
an X-ray imaging set-up and an adequate scanning 
protocol to infer grain traits from the X-ray images 
of the grains. We manufactured grain sample holders 
(Fig.  6A) to hold ~  100 rice paddy grains (~ 3–5  g) at a 
time. !is sample holder needed approximately 5  min 
to be filled and around 1 min to be placed in the X-ray 
system, scanned and removed from the X-ray system. 
!e selected whole-grain samples (“paddy rice”) were 
imaged using X-ray system (Figs.  6b, 7b, 8b) and, for 
the imaged samples, the ground truth was generated 
(Figs. 6a, 7a, 8a). !e scanning procedure, the variability 
in the target trait (Figs. 6c, 7c, 8c), the key principles of 
features extraction process from X-ray images and the 
accuracy of the individual grain trait inference from these 
images (Figs.  6d, 7d, 8d) are described in the following 
sub-sections.

T1: Cha"ness (number of empty/aborted/damaged grains)
To establish the classification algorithm that differenti-
ated “chaffy” grains, we used the X-ray images which 
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were manually annotated by experts (Sect. “Image treat-
ment, features extraction and trait inference algorithms”). 
!e whole process is illustrated by Fig. 5. Section “Image 
treatment, features extraction and trait inference algo-
rithms” the developed image analysis was able to dif-
ferentiate “chaffy” and “non-chaffy” grains and reflected 
the scoring by experts with high accuracy  (R2 = 0.9987, 
RMSE = 1.302; Fig. 6D).

T2: Chalky rice kernel percentage (CRK%)
To capture the variability in CRK% of paddy rice using an 
X-ray system, the image features defining chalky kernel 
mass had to be found. !erefore, unlike for “chaffiness”, 
the prediction of “CRK%” from X-ray images required 
a “virtual de-husking” step in the image analysis proce-
dure that separated the proportion of image reflecting 
the husk mass from the kernel mass at the level of indi-
vidual grains. !e key sequence of the whole process is 
illustrated in Fig.  7. We observed that for certain grain 
types, particularly the short and bold grains, the generic 
“virtual de-husking” approach did not achieve a complete 
husk segmentation in the 2D X-ray images, hence leading 
to an overestimation of CRK% in these specific samples 
(four of low CRK% samples within our dataset predicted 
60–70% CRK). However, for the remaining samples, the 
obtained CRK% predictions reflected substantial pro-
portion of variation in ground truth CRK%  (R2 = 0.9395, 
RMSE = 8.91).

T3: Head rice recovery percentage
During the algorithm development process, it became 
evident that HRR% is a complex trait influenced by mul-
tiple grain features, including the distribution of matter 
between the husk and kernel, grain and kernel size and 
shape, and grain matter homogeneity. In our dataset, the 
combination of “grain size” and “shape” image features, 
along with the features used to predict CRK% (kernel 
matter density and homogeneity within the kernel) were 
used to explain HRR% variability at the level of indi-
vidual grains. Error! Reference source not found.igure 
8 provides a visual representation of the steps involved 
in the process. It should be noted that the estimated 
HRR% predicted from the X-ray image analysis method 
overestimated the ground truth measurements (37–74% 
HRR, mean = 56% HRR), compared to estimations using 
X-ray image analysis (45–73% HRR, mean = 59% HRR). 
However, the predicted values were correlated with the 
manual measurements reasonably well  (R2 = 0.7612, 
RMSE = 6.83), although the slope and intercept deviated 
from a 1:1 ratio.

Discussion
Technological advancement of the agricultural sector is 
expected to address the food requirements of the grow-
ing population. !e presented case study is the first of its 
kind that shows feasibility of using X-ray-based imaging 
and image analysis methods to assist rice research, par-
ticularly rice breeding process.

In our proof-of-concept study, we focused on three 
physical grain traits related to the rice crop yield and 
quality; T1 = number of chaffy grains (“chaffiness”, indi-
cating the degree of grain filling or damage), T2 = chalky 
grain chalkiness percentage (CRK%, reflecting the kernel 
quality) and T3 = head rice recovery percentage (HRR%, 
indicating the amount of marketable yield after the paddy 
rice milling and polishing process). Currently, in most of 
the cases, the number of “chaffy” grains is counted manu-
ally while other traits like HRR% and CRK% require the 
grains to be first de-husked and polished mechanically 
(e.g. by milling machine), broken kernels need to be sepa-
rated, and for HRR% the individual fractions have to be 
additionally weighted. !ese separated kernels undergo 
further evaluation for the proportion of chalky kernels 
with different machines (e.g., like Vibo) and/or visually.

!ese three key traits are the physical/structural prop-
erties of the grain which could be potentially measured 
using a single sensor like X-ray imaging [24] in combi-
nation with adequate image postprocessing. Such an 
approach has not been attempted for rice grains evalu-
ation before. Furthermore, as recently shown for wheat 
[31] and peanuts [25], the trait calculation from X-ray 
images is non-destructive, and these images capture the 
grain mass variability along with its internal structures. 
!is is a considerable advantage over other sensory 
methods like RGB or NIR imaging that typically cap-
ture only fraction of the grain surface. !is particular 
property of X-ray imaging—being able to evaluate grain 
internal mass and structures (e.g. kernel and husk)—was 
leveraged for paddy rice in this feasibility study.

Among the rice cultivars assessed, the variation in 
three chosen traits represented the typical ranges docu-
mented for rice products: head rice recovery percent-
age: HRR%, T3) ∈ [45% to 73%] similarly as documented 
in [36], (where HRR% ranged from 24 to 74%), the 
chalky rice kernel percentage T2 (CRK%) spanning from 
T2 ∈ [1% to 90%] (similar to [37], where the CRK% ranged 
from 1 to 75%), and chaffy grain counts T1 ∈ [0% to 
100%]. It took ~ 6 min to evaluate ~ 5 g of rice grains for 
all three traits. Since the accuracies achieved using the 
analysis from X-ray images were in reasonable agreement 
with the manual reference methods these might justify 
the next steps towards robustification of these methods 
and might be, potentially, considered for the rice grain 
evaluation in the future.
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Particularly, the ability to predict several grain traits 
from single X-ray images (in our case HRR%, CRK%, 
chaffiness) on an individual grain level could be of 
immense value to users. Moreover, there is an opportu-
nity to develop further algorithms calculating additional 
traits from these images (e.g. size and shape, weight, 
grain matter density as demonstrated before [11]). !is 
imaging approach can, in theory, substantially streamline 
the sample-handling logistics and minimize the sample-
manipulation related errors. !e non-destructive nature 
of X-ray image-based evaluation, furthermore, opens the 
opportunity to re-use the same samples for other tests/
sowing. Already in sugar beet quality testing and some 
sorting applications X-ray CT or X-ray radiography 
methods are used regularly without further effects on 
germination behavior [38]. In the presented method here, 
each grain receives a dose of approximately 3,12 · 10−3 Gy 
(HRR% and CRK%) and 0,51 · 10−3 Gy (Chaffiness). !us, 
it is not likely to affect the germination behavior of indi-
vidual grains. Nevertheless, it is reported that a reduc-
tion in germination behavior is after accumulated doses 
of more than 15 Gy [39] and plant growth is affected at 
doses above 30  Gy [39], both being between 5000 and 
30000 times higher than the dose applied within the cur-
rent experiment.

Novel opportunities
We demonstrated it is feasible to develop algorithms to 
infer relatively complex structural-physical traits from 
paddy rice based on 2D X-ray projections (HRR%, chaf-
finess, CRK%). !is image analysis included several pro-
cessing steps enabling the detection, the segmentation, 
and the evaluation of single rice grains even for the bulk 
trait as HRR% where ground-truth cannot be measured 
on individual grains. !e individual grain analysis opened 
the opportunity to assess rice cultivars more accurately 
or select individual grains for further testing.

For the case of CRK%, we showcased that the raw 2D 
X-ray images of whole rice grains can be virtually seg-
mented into kernels and husk (“virtually de-husked”) and 
the kernel-features can be reliably evaluated from the 
whole grain scans. !e ability of X-ray system to evaluate 
internal structures of grains without milling process can 
be considered another substantial advantage for logistics 
of grain evaluation, particularly for the tightly husked 
grains (such as rice, barley, small millets, sunflower, saf-
flower etc.).

Limitations and further directions
!e presented study demonstrated the X-ray based imag-
ing system could be used to evaluate rice grains, yet fur-
ther developments are required to achieve the level of 
technological robustness to integrate such methodology 

into routine operations. Next step of system development 
will be guided by close collaboration with the system 
users. Ultimately, robustification of the trait inference 
algorithms by adding more grain ground truth measure-
ments from diverse rice cultivars with their choice being 
guided by the users’ requirements will have to be done. 
Also, in the current state of the algorithm development, 
the “virtual de-husking algorithms” requires further 
standardization for particular types of paddy rice (see 
Sect.  “Rice grain material and ground truth measure-
ments”). Furthermore, the sample holders hand-crafted 
for the study should be standardized and improved 
to ease the grain handling operations. Other develop-
ment steps might include transition from 2D radiogra-
phy to 3D tomography, which might ramp up the size of 
the sample being evaluated at one go (nevertheless, 3D 
imaging procedures will have to be carefully optimized 
as 3D tomographic methods are more time-intensive in 
terms of scanning and require high computation inten-
sity). Recent literature also illustrated that the grains and 
kernels can be evaluated directly in the panicle without 
threshing [24, 40] which could be the next step to ease 
logistics of the sample preparations, especially for those 
crops where threshing/shelling pose a hurdle for grain 
evaluation (such as rice, small millets, barley etc.). Nowa-
days, it’s becoming feasible to engineer robust, portable, 
X-ray systems to evaluate the paddy grains/panicles out-
doors [41, 42]. Technology mobilization might propel the 
usage of the above demonstrated research beyond the 
current infrastructural limitations (e.g. for paddy evalua-
tion directly in the commodity value-chains) and is in the 
spotlight of global Food & Safety organizations [43].

Conclusion
!e presented proof-of-concept study demonstrated, 
for the first time, that a single X-ray image of the paddy 
rice grains coupled with adequate trait prediction models 
can be used to evaluate multiple physical and structural 
grain and kernel characteristics (e.g. traits such as HRR%, 
chaffiness, CRK%). !e presented non-destructive X-ray 
image analysis returns trait values for individual rice 
grains and doesn’t require grain milling to evaluate grain 
kernel characteristics. !erefore, the presented method 
might significantly enhance accuracy and efficiency of 
rice grain evaluations thus enhance rice research. !ese 
principles can be readily adapted for other grain crops 
and are expected to enhance the effectivity of grain eval-
uation processes, particular for the tightly husked grains 
(e.g. barley, small millets, sunflower) where high through-
put is expected.

With the expected trends for miniaturization and 
mobilization of technology we foresee the integration of 
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the proposed X-ray technology with many other research 
areas (e.g. commodity value chains, climate- change agri-
cultural transition).
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