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ity. Phenotyping of FHB resistance traits, Fusarium-damaged kernels (FDK), and
deoxynivalenol (DON)), is either prone to human biases or resource expensive, hinder-
ing the progress in breeding for FHB-resistant cultivars. Though genomic selection
(GS) can be an effective way to select these traits, inaccurate phenotyping remains a
hurdle in exploiting this approach. Here, we used an artificial intelligence (AI)-based
precise FDK estimation that exhibits high heritability and correlation with DON. Fur-
ther, GS using Al-based FDK (FDK_QVIS/FDK_QNIR) showed a two-fold increase
in predictive ability (PA) compared to GS for traditionally estimated FDK (FDK_V).
Next, the Al-based FDK was evaluated along with other traits in multi-trait (MT)
GS models to predict DON. The inclusion of FDK_QNIR and FDK_QVIS with
days to heading as covariates improved the PA for DON by 58% over the baseline
single-trait GS model. We next used hyperspectral imaging of FHB-infected wheat
kernels as a novel avenue to improve the MT GS for DON. The PA for DON using
selected wavebands derived from hyperspectral imaging in MT GS models surpassed

Abbreviations: Al, artificial intelligence; BLUE, best linear unbiased estimate; CNN, convolutional neural network; CV, cross-validation; DIS, disease
index; DL, deep learning; DON, deoxynivalenol; FDK, Fusarium-damaged kernels; FHB, Fusarium head blight; GBS, genotyping-by-sequencing; GP,
genomic prediction; GS, genomic selection; HD, days to heading; HWW, hard winter wheat; MAS, marker-assistant selection; ML, machine learning; MS,
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the single-trait GS model by around 40%. Finally, we evaluated phenomic prediction
for DON by integrating hyperspectral imaging with deep learning to directly predict
DON in FHB-infected wheat kernels and observed an accuracy (R> = 0.45) com-
parable to best-performing MT GS models. This study demonstrates the potential
application of Al and vision-based platforms to improve PA for FHB-related traits

using genomic and phenomic selection.

Plain Language Summary

Fusarium head blight (FHB) is a devastating disease of wheat and breeding for
resistant cultivars is the best approach to counter this disease. However, complex
phenotyping of various FHB traits makes it harder for breeders to select resistant
cultivars. Our study investigates the usefulness of artificial intelligence (AI)-based
phenotyping in improving the prediction accuracy (PA) of FHB traits in wheat. We
demonstrate that Al-derived Fusarium-damaged kernels phenotype can improve the
prediction of FHB traits using genomic selection. Furthermore, we explored novel
tools like hyperspectral imaging and deep learning for improved prediction of FHB
resistance in wheat. Our results suggest that the application of novel technologies
can be very useful in improving the prediction of FHB traits and can assist wheat
breeders in developing FHB-resistant cultivars.

1 | INTRODUCTION

Fusarium head blight (FHB), predominantly caused by Fusar-
ium graminearum Schwabe, is an economically important
fungal disease that adversely affects wheat production in
Canada, the United States, and many other countries (Gilbert
& Tekauz, 2000; McMullen et al., 2012). FHB-infected wheat
spikes give a premature bleaching appearance and affect ker-
nel development, leading to shriveled kernels with reduced
test weight. In addition to grain yield losses, the fungus pro-
duces mycotoxins, primarily deoxynivalenol (DON), which
pose serious health consequences to humans and livestock
if ingested above certain quantities (Miedaner et al., 2017).
Different restrictions and limits have been imposed on the
maximum level of DON allowed in wheat grains and grain
products used for food and feed in most countries includ-
ing the United States and Canada. In the United States, FHB
epidemics have spread to all major wheat-producing states
in the last couple of decades, partially owing to increased
maize acreage and reduced tillage (Gilbert & Haber, 2013;
McMullen et al., 2012).

Fungicides are frequently used to manage FHB; however,
the application of fungicides is quite cumbersome due to a
limited application window for the successful management of
the disease (McMullen et al., 2012). Further, increased costs
and potential environmental impact due to fungicides make
the development and deployment of FHB-resistant cultivars

the most effective and environment-friendly approach to man-
age and minimize the losses caused by FHB. In the context of
FHB, resistance is highly polygenic and influenced by envi-
ronmental factors. In general, the genetics of FHB resistance
have been categorized as type I (resistance to initial infec-
tion), type II (resistance to fungal spread across the wheat
head), and type III (low mycotoxin accumulation) (Bai et al.,
2018). However, only type II resistance has been extensively
characterized and exploited in breeding programs as it is the
easiest to assess compared with other types (Bai & Shaner,
2004). Furthermore, a large number of quantitative trait loci
(QTL) associated with FHB resistance have been identified,
including some important genes like Fhbl; however, only a
few have been successfully incorporated into wheat breeding
programs (Bai et al., 2018; Steiner et al., 2017; Venske et al.,
2019; J. Zhang et al., 2022b). In the US hard winter wheat
(HWW) growing region, native resistance QTL have served
as the major source of FHB resistance and played an impor-
tant role in alleviating HWW FHB losses in the Great Plains
(J. Zhang et al., 2022b). Conversely, the small effect of native
QTL has limited the applications of marker-assistant selection
(MADS) in developing FHB-resistant HWW varieties.

In addition to the complex quantitative inheritance, the
winter wheat breeders in the Northern Great Plains of the
United States face another challenge of shorter turnaround
cycles, which makes it almost impossible to evaluate and
select for FHB resistance based on postharvest traits, that is,
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Fusarium damaged kernels (FDK) and DON, which further
hinders breeding efforts to develop resistant cultivars (Figure
S1). To overcome this limitation, genomic selection (GS) can
be an effective alternative that provides an opportunity for
the breeders to predict/select for low FDK and DON, which
are otherwise challenging to phenotype in an appropriate time
frame.

GS is an approach that estimates the genetic worth of an
individual based on genome-wide markers (Heffner et al.,
2009; Meuwissen et al., 2001). Rather than relying on a few
selected markers as in MAS, GS uses genome-wide mark-
ers in a population jointly to predict the breeding values
of individuals (Meuwissen et al., 2001). Plant breeders are
increasingly evaluating and adopting GS in their breeding
programs (Calvert et al., 2020; Gill et al., 2021, 2023; Lado
et al., 2018; Moreno-Amores et al., 2020). Multiple studies
have reported successful evaluation or implementation of GS
in different crops, including wheat, indicating the immense
potential of GS in plant breeding (Bhat et al., 2016; Gill et al.,
2023; Juliana et al., 2017; Lado et al., 2018; Poland et al.,
2012). Further, GS has been evaluated and shown promising
for FHB resistance in wheat in several studies (Arruda et al.,
2015; Dong et al., 2018; Larkin et al., 2020; Mirdita et al.,
2015; Rutkoski et al., 2012; Verges et al., 2020; W. Zhang
et al., 2021; J. Zhang et al., 2022a). Despite the successful
evaluation of GS for FHB resistance in general, the implemen-
tation in the breeding programs remains a challenge owing to
the lower predictive ability (PA) of genomic prediction (GP)
models for these traits.

The PA depends on several factors including the nature and
size of training population (TP), accurate phenotyping, trait
heritability, and statistical models used (Gill et al., 2021).
Accurate and efficient phenotyping for FDK remains a key
factor for streamlining the GS in the FHB-resistance breeding
program. However, FDK phenotyping usually uses two tradi-
tional approaches involving manual enumeration of FDK by
physical separation of healthy and diseased kernels or visual
estimation of FDK using a set of standards (Agronomic Crops
Network, n.d.). Most breeding programs adhere to the visual
estimation as it is relatively faster. However, this method is
subjective, highly prone to human bias, and results in inaccu-
rate measurements, lower repeatability, and lower heritability
estimates. Subsequently, inaccurate phenotyping remains a
bottleneck and limits the exploitation of GS for FDK and
DON. Therefore, there is a need to supplement the GP models
with emerging phenomics technologies and machine learning
(ML) approaches to improve the PA for traits like FDK and
DON (Ackerman et al., 2022; Gaire et al., 2022; Rutkoski
etal., 2012; Wu et al., 2023).

In recent years, a few studies have been carried out to
evaluate alternative automated and artificial intelligence (AI)-
based methods to obtain FDK employing spectroscopy or
image-based approaches (Ackerman et al., 2022; Barbedo

Core Ideas

* Vision and artificial intelligence (Al)-based tech-
nology provide an effective way to phenotype
Fusarium-damaged kernels (FDK) in wheat.

* Inclusion of Al-based FDK as a covariate in
multi-trait genomic prediction models yields high
predictive ability for deoxynivalenol (DON).

* Hyperspectral imaging can be leveraged to
improve the predictive ability of DON using
genomic prediction as well as for direct phenomic
prediction.

et al., 2015; Delwiche et al., 2019; Maloney et al., 2014;
Wu et al., 2023). Notably, Ackerman et al. (2022) used an
Al-powered platform (Vibe QM3i) that uses 2D imaging of
kernels in bulk and exploits morphological features to esti-
mate FDK. On the other hand, Wu et al. (2023) incorporated
deep learning (DL) to estimate FDK in infected samples.
Overall, these studies have shown some improvement in the
accuracy of obtaining FDK compared to the manual method,
but each approach has its limitations. In the current study, we
estimated FDK using a highly accurate Al-assisted automated
sorter (QSorter Explorer) that has been previously used for
single kernel-based phenotyping of complex traits in differ-
ent species (Alvarez et al., 2021; Armstrong et al., 2017; Davis
etal., 2021; Rupenyan et al., 2016). QSorter Explorer has been
trained to automatically sort the diseased and infected ker-
nels by extracting kernel morphology as well as spectroscopy
based on single kernels and enumerating FDK value for the
sample using ML models. Here, we assess the PA of GP mod-
els for Al-based FDK in comparison to traditionally estimated
visual FDK.

Further, DON is another important trait for improving FHB
resistance in wheat. However, quantifying DON levels within
grain samples is cumbersome and expensive, involving tech-
niques like enzyme-linked immunosorbent assays or mass
spectrometry (MS), and could not be performed within the
short turnaround time in a breeding cycle, thus limiting the
opportunities to enable selection for lower DON levels (Gaire
et al., 2022). Recently, several simulated and empirical stud-
ies evaluated multi-trait (MT) GP models that can leverage
genetic correlations among different traits to improve PA
for traits of interest (Gaire et al., 2022; Gill et al., 2021;
Lado et al., 2018; J. Zhang et al., 2022a). Multiple studies
have incorporated traits like days to heading, plant height
(PH), and/or FDK as a covariate in MT models to predict
DON (Gaire et al., 2021; Larkin et al., 2020; Moreno-Amores
et al., 2020; Schulthess et al., 2018; Steiner et al., 2017) and
shown some improvement in the PA. Overall, these studies
emphasized that FDK stands out to be the most important
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secondary trait to predict DON in MT models, and MT models
consistently demonstrated superior performance compared to
single-trait (ST) GS. This creates novel avenues to evaluate
MT GP models for DON using more accurate Al-based FDK
estimates as covariates.

In addition to high-throughput robotics, various spectro-
scopic techniques have also been used recently to assist
the phenotyping of complex traits in different crop species
(Kalendar et al., 2022; Li et al., 2014). Unlike traditional spec-
troscopy techniques, hyperspectral imaging represents a novel
nondestructive analytical approach that provides the ability
to measure traits across a wide range of wavebands simul-
taneously, enhancing the analytical potential (Alvarez et al.,
2021). Many studies have used hyperspectral imaging to assist
phenotyping for a variety of traits in several crops, includ-
ing FDK (Delwiche et al., 2011; Femenias et al., 2021; Shao
et al., 2020). Further, these phenomics approaches have been
integrated with ML and DL models to predict a variety of
agronomic traits (Alzubaidi et al., 2021; Araus et al., 2018;
Jackson et al., 2023; Robert et al., 2022). Nevertheless, there
has been no report of utilizing hyperspectral imaging of FHB-
infected kernels coupled with GP to predict DON content. In
the current study, we assessed the potential of hyperspectral
imaging in improving the PA for DON by integrating it into
the MT GP models. Further, several studies in wheat and other
crops have suggested that phenomic prediction using image-
based spectral features can be equally effective or even surpass
the performance of GS (Adak et al., 2023). Hence, it is intrigu-
ing to integrate hyperspectral imaging with ML/DL models
to predict DON without relying on genomic information and
avoiding tedious and expensive gas chromatography method.

The primary goal of this study was to integrate genomics
and phenomics with ML methods to improve the prediction
of FDK and DON in HWW to facilitate breeders in the selec-
tion of genotypes with low FDK and low DON. Based on
this, the specific objectives of the study were (a) evaluating
the PA of GP models using high-throughput phenotyping-
derived FDK estimates, (b) assessing the performance of MT
GS models including Al-based FDK estimates as secondary
traits to predict DON, (c) evaluating the incorporation of spec-
tral information derived from hyperspectral imaging in MT
GS models for DON prediction, and (d) evaluating direct use
of the hyperspectral wavebands for phenomic prediction of
DON via ML.

2 | MATERIALS AND METHODS

2.1 | Plant materials and phenotyping for
FHB traits

To predict lines from earlier generations for FDK and DON,
we used a diverse set of 250 breeding lines (Fy.q /F4.g /Fy7

filial generation) from the winter wheat breeding program at
South Dakota State University (SDSU). Four common FHB
check cultivars including Emerson and Everest as the resistant
controls and Flourish and Overley as the susceptible controls
were used for FHB evaluation. Based on quality control (QC)
of the genotype data, four lines were not used in downstream
analysis.

The plant materials were planted in two independent exper-
iments/FHB Field nurseries in 2022 at SDSU Agricultural
Experimental Stations located in Brookings and Volga, SD.
The planting and harvesting dates were September 30, 2021,
and July 28-29, 2022, respectively. The set of 250 lines was
planted in a randomized complete block design with two repli-
cations in each of the FHB nurseries. The experimental unit
consisted of a 1 m single-row plot with approximately 60
plants/row. Days to heading (HD) were recorded as Julian days
when 50% of the plants in each row had completely emerged
heads. PH was measured at maturity as the distance from the
surface of the soil to the apex of the primary tiller excluding
awns.

The disease nurseries were inoculated with Fusarium
graminearum-infested corn spawn (isolate SD-FG1) as pre-
viously described in Halder et al. (2019). In brief, the infested
corn spawn was uniformly spread at stage Feekes 10 and
then at Feekes 10.1 to maximize the infection. In addition,
to minimize disease escape, the lines were tagged at anthe-
sis, and wheat heads were sprayed with a conidial suspension
comprising 100,000 spores/mL at 50% anthesis. The field
was mist irrigated using a sprinkler system every night (7:00
p-m. to 7:00 a.m.) for 2 min (every 10 minutes) to main-
tain high humidity and favor disease development. Phenotypic
data were collected for disease incidence and severity 21
days postinoculation on at least 20 heads per row (each
genotype) using the scale described by Stack and McMullen
(2011). Disease incidence and severity were used to cal-
culate disease index (DIS) as (incidence (INC) X severity
(SEV)/100.

Two postharvest FHB traits, namely FDK and DON, were
recorded after harvesting the rows using a low airspeed
thresher. FDK was measured using two different strate-
gies. The first strategy involved trained personnel sampling
the kernels for each line (in two technical replicates) and
comparing them against a set of known FDK standards (Agro-
nomic Crops Network, n.d.) to estimate the percentage FDK
(referred to as FDK_V hereafter). The second strategy used an
Al-based automated seed sorter (QSorter Explorer) for mea-
suring FDK based on two different algorithms. The QSorter
Explorer is a sophisticated robot for single kernel analysis
and sorting powered by cutting-edge mechatronics and Al
(Figure 1A). Briefly, the QSorter Explorer uses a 3D vision
sensor and a high-resolution near infrared (NIR) spectrome-
ter to inspect each kernel and further uses Al-based models to
sort healthy and diseased kernels in real-time. We employed
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FIGURE 1
deoxynivalenol (DON) using hyperspectral imaging.

QSorter in two ways to estimate FDK. First, we employed
only a 3D imaging sensor to inspect each kernel and obtain
the FDK value (FDK_QVIS). Second, both the 3D sensor
and NIR spectrometer of the QSorter were used to inspect the
appearance and spectral information for each kernel to esti-
mate the FDK percentage (FDK_QNIR). In addition to FDK,
the samples were also subjected to estimation of DON content
(ppm) using the gas chromatography-MS method (Simsek
etal., 2013) at the Department of Plant Science, North Dakota
State University.

2.2 |
data

Statistical analysis of the phenotype

All the statistical analyses were performed in R statistical
programming language (R Core Team, 2018) using different
libraries. For the experimental design, best linear unbiased
estimates (BLUESs) for various traits were estimated using the
following model:

y,J=M+E,+GJ+€”

here y; ; is the trait of interest, y refers to overall mean, E;
denotes the random effect of the i experiment (referring to
independent FHB nursery as two technical replicates within
a nursery were averaged), G; is the fixed effect of the jh
genotype, and e;; refers to the residual error effect of the
i" experiment and j genotype. The broad-sense heritabil-

ity (H?) for FHB traits was estimated by fitting the genotypic

Sor1 healthy and diseased kernels
D 2D/3D imaging

iy

Hyperspectral image processing

-

|
|
i

s rdssssssssssissssssssismtiiad
500 600 700 800 900 1000
Wavelength (am)

Spectral profile Hyperspectral indices (HSI)s

Visual representation of the phenotyping platform for (A) Fusarium-damaged kernels (FDK) using QSorter Explorer and (B)

effect from above equation as random using the following
formula:

o2

2 _ g
o2 + o /nExp
where ag and "Z are the genotype and error variance
components, and nExp refers to the number of experi-
ments/nurseries. The above analysis was performed in R
using the “MrBean” platform (Aparicio et al., 2023) based on
“lme4” package (Bates et al., 2015). The correlations among
traits were estimated and visualized based on the BLUESs for
each trait using the psych library in R (William, 2024). All the
model comparisons were visualized using “ggplot2” package
in R (Wickham, 2016).

2.3 | Genotyping-by-sequencing

The breeding lines were genotyped using genotyping-by-
sequencing (GBS) as previously described (Gill et al,
2022). In brief, leaf tissues were used for DNA isola-
tion using the hexadecyltrimethylammonium bromide method
(Doyle & Doyle, 1987) and GBS libraries were pre-
pared using the Pst/ and Mspl restriction enzymes as
described by Poland et al. (2012) and sequenced at the
USDA Central Small Grain Genotyping Lab, Manhat-
tan, KS. The sequencing data were used to call single-
nucleotide polymorphisms (SNPs) (Bradbury et al., 2007)
using IWGSC Chinese Spring (CS) RefSeq v2.1 as the
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reference genome (Zhu et al., 2020). For QC, the SNPs
with more than 30% missing values, minor allele frequency
of <5%, and unmapped on a specific chromosome were
removed, which yielded a total of 10,644 high-quality SNPs.
Those SNPs were imputed for missing datapoints using BEA-
GLE v4.1 (Browning & Browning, 2007) for further analysis.
The principal component analysis (PCA) was performed for
the genotypic data using “SNPRelate” package and visualized
using “ggplot2” in R (Wickham, 2016).

2.4 | GP models

24.1 | Single-trait GP models

The ST genomic prediction for FDK and DON was performed
using five different algorithms. The genomic BLUP (GBLUP)
model (VanRaden, 2008) is the widely used GS model in plant
breeding and used as a benchmark for comparison with other
models. The GBLUP was implemented using a linear mixed
model presented in the following equation:

y=1lu+Zu+e

where y is the vector (n X 1) of BLUE values for each trait;
u is the overall mean; Z is the incidence matrix for geno-
type effects; u is a random vector of genetic values with
u ~ N(O, Gag), where G is the genomic relationship matrix
(VanRaden, 2008) and crg is the additive genetic variance; and
e is the vector of residual errors with e ~ N(O, 0'3).

Apart from GBLUP, four commonly used Bayesian mod-
els, Bayes A (BA), Bayes B (BB), Bayes C (BC), and Bayesian
ridge regression (BRR), were used for ST GP (Habier et al.,
2011; Meuwissen et al., 2001; Pérez & De Los Campos,
2014). In contrast to GBLUP, the Bayesian models assume
different prior distributions for estimating marker effects
and variances overcomes the limitation of GBLUP, that is,
homogenous shrinkage of marker effects (Lorenz et al., 2011;
Pérez & De Los Campos, 2014), and these models have been
widely evaluated for prediction of complex traits. A detailed
account of the abovementioned Bayesian methods can be
found in Montesinos-Lopez et al. (2022).

All the ST models were implemented in R package
“BGLR” with 5000 burn-ins and 15,000 iterations
(https://github.com/gdlc/BGLR-R/blob/master/inst/md/
GBLUP.md)(Pérez & De Los Campos, 2014).

24.2 | Multi-trait GP

An MT GP model was used with the trait of interest
(FDK/DON) as primary trait and combination(s) of other

traits as covariates. The model can be expressed as:

Yi 10w Z0||g €
N N EEE N I S N I
yi’l OII’! l’l'l’l OZH gn el’l

where y is the n-dimensional vector of BLUEs for n traits,

I and Z are the design matrices, y,, t = 1 ... n, refers to
g1

trait intercepts of n traits, [ : ] are the predicted genetic val-
gy

ues assumed to be distributed as ~ MVN(O, E ®G) with G
representing the genomic relationship matrix obtained follow-
ing VanRaden (2008). The residuals of the MT model were
€
assumed to be normally distributed as [ : ]~ MVN(O,R® I).
ei’l
The matrices Y, and R are the variance—covariance matrices
for the genetic and residual effects between traits, with Y esti-
mated as an unstructured variance—covariance matrix and R
as a diagonal variance—covariance matrix. The MT model was
implemented using the “MTM” package in an R environment
(de los Campos & Griineberg, 2016), employing the Gibbs
sample algorithm with 15,000 iterations and 5000 burn-ins.

24.3 | Combination of traits for MT model

We evaluated MT GP for three FDK estimates (FDK_V,
FDK_QVIS, and FDK_NIR) by using them as primary traits
and HD, PH, and/or DIS as secondary traits. Similarly, the
MT model was used to evaluate PA for DON using a variety
of combinations of secondary traits. For DON, we used HD,
PH, and/or DIS as secondary traits. Thereafter, we expanded
the combinations of secondary traits by including three types
of FDK estimates (FDK_V, FDK_QVIS, and FDK_QNIR)
along with HD, PH, and/or DIS. Finally, we evaluated a set of
hyperspectral wavebands representing a wide range of wave-
lengths as secondary traits and DON as a primary trait in
the MT model. Altogether, 21 different combinations of sec-
ondary traits were used in the MT model to predict DON.
All the MT models were compared to the ST GBLUP model
using Fisher’s least significance difference test with Bonfer-
roni correction using “agricolae” library in R (de Mendiburu,
2023).

2.4.4 | Cross-validation for GP models

The PAs of the GP models were assessed by calculating the
correlation between genome-estimated breeding values and
the observed phenotypic values of individuals in a testing
set using a cross-validation (CV) scheme. These CV schemes
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were followed based on real scenarios observed in plant breed-
ing experiments. An 80:20 random CV approach, CV1, was
used to evaluate the ST models, where 80% of the lines were
used as the training set (had genotypic and phenotypic data) to
train the model, and the remaining 20% were used as the test-
ing set (only genotypic data) for prediction with 100 random
repetitions. The PA of MT model was assessed using the CV2
scheme, where lines were split into an 80:20 ratio with 80%
used as the training set, and the remaining 20% as the testing
set (Gill et al., 2022). To train the model, we used genotypic
data and the phenotypic data of the primary trait for the train-
ing set, along with phenotypic data of the secondary traits for
training as well as the testing set with the objective of pre-
dicting the primary trait of the testing set. As fitting an MT
model with several traits is quite extensive, we used 50 ran-
dom repetitions of the CV2 approach to assess PA. Both the
CV schemes have been illustrated and successfully employed
in previous studies (Gaire et al., 2021).

2.5 | Hyperspectral imaging and extraction
of indices

A close-range indoor hyperspectral imaging system, SPECIM
IQ camera (SPECIM), was used to capture hyperspectral
images of FHB-infected wheat kernel samples (Figure 1B).
It has a wavelength range of 397-1004 nm, a spatial res-
olution of 512 X 512 pixels, and a spectral resolution of
7 nm. It can capture hyperspectral imagery, radiometric cal-
ibration, data processing, and visualization. Hyperspectral
imagery of the samples was collected indoors with halogen
illumination. White reference panel (i.e., Lambertian surface)
with SPECIM IQ imaging system was captured simultane-
ously with each sample during the image collection. This
white reference data were used to transform the hyperspec-
tral raw imagery digital numbers to reflectance values. This
transformation was performed automatically based on built-
in functions. A total of 492 samples (246 genotypes in
two replicates) were scanned using the SPECIM 1Q camera,
and each sample was imaged twice, making a total of 984
images.

The hyperspectral image cubes obtained from the SPECIM
IQ camera were in the form of radiometrically corrected
reflectance data. Due to the high noise levels, a few bands
were removed from the reflectance images, leaving 196 spec-
tral wavebands/indices. From each hyperspectral reflectance
image, a region of interest (ROI) (i.e., 250 x 250 pixels),
which only includes wheat kernel pixels, was extracted and
used for further analysis. The average pixel values for each
ROI chip image cube were further calculated and used as input
variables for a one-dimensional convolutional neural network
(1D-CNN) DL model that requires 1D input data.

2.6 | Phenomic prediction model building
and evaluation

The CNN algorithm is one of the most well-known and clas-
sical approaches in DL (Alzubaidi et al., 2021; Zhou, 2020).
It can often learn spatial, temporal, and spectral patterns from
input data, demonstrating superior performance to fully con-
nected feed-forward deep neural network and conventional
ML methods in many applications (Gu et al., 2018). Here, we
investigate the potential of 1D-CNN to predict DON solely
based on hyperspectral wavebands. 1D-CNN is often used
for cases with 1D input variables; it can efficiently learn the
sequential or spectral patterns and extract essential features
from 1D input variables. In the current study, the input vari-
ables are 1D spectral profiles averaged from the wheat kernel
hyperspectral chip images.

As shown in Figure 2, the optimal 1D-CNN architecture
was selected after investigating a variety of different archi-
tectures. Batch normalization of feature maps was employed.
It often can effectively avoid gradient issues to potentially
improve model performance (Ioffe & Szegedy, 2015). In
addition, a dropout function was also incorporated to avoid
overfitting issues. Rectified linear unit activation function was
used in the convolutional and fully connected dense layers of
DL architectures, and linear activation functions were adopted
in the output layer. The samples were randomly split into
training (70%) and testing (30%). The 30% unseen testing
data were used to evaluate the model performance. Hyperpa-
rameter tuning was carried out during the training phase of
1D-CNN model. Optimal learning rate, dropout rate, batch
size, and so on, were selected to achieve the best model
performance.

The performance of the model was evaluated using metrics
such as root mean square error (RMSE) (Equation 1), rela-
tive root mean square error (RMSE%) (Equation 2), and the
coefficient of determination (R?) (Equation 3). Here, yi and i
refer to the measured and the predicted wheat DON content
values, y is the mean of measured wheat DON content values,
and n is the total number of samples in the testing set.

n . A\ 2
RMSE = T, b3 (D

n—1

RMSE

RMSE% = ——— x 100 (2)
y

N2

) Z?:1<yi—yi)

R 1m0 @
Zizl(yl—y)

85U8017 SUOWIWOD SA[E8ID 3 [cedt[dde au Aq peusenob a.e s9jole YO ‘SN Jo Sojni o} AkeudIT8UIIUQ AB]I/ UO (SUONIPUOD-pUE-SWB 0" A 1M Alelq 1 jeuljuo//SANy) SUONIPUOD PUe SWIS 1 81 88S *[520z/60/LT] uo Akidiauljuo (1M ‘Bess| aueiyood Ad 020z Z6c1/Z00T 0T/10p/woo A8 im Al jeul|uo'Ssesae//Sdny Wolj pepeojumod ‘€ ‘vZ0Z ‘ZZEE0r6T



THAPA ET AL. The Plant Genome 8of 17
Input Block 1 Block2 Fully connected dense layers Output
£ a S He .
=i =
B 3 ||= & =2 lil2 |8 N = Wheat
S 7 Ne Z Ne M8 k& = & DON
S m m A || = m 8
&
=
FIGURE 2 The input dimension, architecture, and output of the one-dimensional convolutional neural network (1D-CNN) deep learning

model. N represents the number of samples used for model training or testing. BN represents batch normalization. DON, deoxynivalenol.
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coefficients among investigated traits using the best linear unbiased estimates (BLUEs) for various traits. The lower triangle shows the bivariate

scatterplots with fitted lines and the upper triangle elucidates the correlation coefficients. Statistically significant differences are denoted by an
asterisk (*) where *p < 0.05, **p < 0.01, and ***p < 0.001. DIS, disease index; DON, deoxynivalenol; FDK_QNIR, vision- and spectroscopy-based
FDK from QSorter; FDK_QVIS, vision-based FDK from QSorter; FDK_V, manually estimated FDK; HD, days to heading; PH, plant height.

The epoch was set to 50 (50, 100, and 150 were tested), and
the batch size was set to 32 (16, 24, and 32 were tested).

3 | RESULTS
3.1 | Phenotypic variation, correlation, and
heritability for FHB traits

A significant variation was observed among the tested geno-
types for all three FHB traits, namely, DIS, FDK, and DON
(Figure 3A-D; Table 1). In general, broad sense heritabil-
ity (H?) was moderate to high for various FHB traits and

ranged from 0.68 for DON to 0.79 for DIS (Table 1). As
described in the methods, we estimated FDK using three dif-
ferent methods. The H? for Al-based FDK (FDK_QVIS and
FDK_QNIR) was relatively higher than manually estimated
FDK_V (Table 1). Moreover, we did observe a difference in
the range of FDK among the three estimation methods. A
higher mean FDK (FDK_QNIR; 75.40%) was observed using
an Al-based method compared to FDK_V (53.85%) (Table 1).
A significant correlation was recorded between different sets
of traits including among three FDK estimates as expected
(Figure 3E). Overall, FDK showed a positive correlation with
HD, DIS, and DON (Figure 3E). DON was positively cor-
related with HD and DIS, while negatively correlated with
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TABLE 1 Summary statistics and broad-sense heritability (H?) of various agronomic and Fusarium head blight traits. The estimates for genetic

and residual variance were obtained from the mixed linear model for respective traits.

Trait Mean H? SD
Days to heading 163.58 0.85 1.36
(Julian days)

Plant height (cm) 90.57 0.73 4.92
Disease index (%) 31.63 0.79 10.22
FDK_V (%) 53.85 0.71 11.91
FDK_QVIS (%) 66.49 0.74 10.30
FDK_QNIR (%) 75.40 0.74 12.55
DON (ppm) 12.08 0.68 4.58

Genetic variance (¢%,) Residual variance (¢%,)

1.56 0.39
2.84 1.51
80.12 40.30
100.96 82.03
78.42 55.36
116.70 81.96
13.93 11.99

Abbreviations: DON, deoxynivalenol; FDK_QNIR, vision- and spectroscopy-based FDK from QSorter; FDK_QVIS, vision-based FDK from QSorter; FDK_V, manually

estimated FDK; SD, standard deviation.

PH. Interestingly, we found a significantly higher positive
correlation between DON and Al-based FDK_QNIR (0.21)
compared to FDK_V (0.16).

3.2 | Genotyping analysis

GBS of 250 breeding lines yielded a total of 10,644 high-
quality SNP markers covering all 21 wheat chromosomes
(Table S1). The highest number of SNPs were found in the
B genome (4721), followed by the A genome (4124) and
D genome (1799). PCA was performed using all the SNPs
to investigate any stratification in the population and ver-
ify the relationship among lines from different stages of the
breeding cycles (Figure S2). The first and second components
explained 5.58% and 5.28% of the total variance, respectively.
Strong population structure was not observed, suggesting
close genetic relationships among the lines in the panel and
the suitability of this panel for evaluating GP models.

3.3 | Single-trait GP for FDK and DON

The first objective of the study was to evaluate ST GP
for different FHB traits and observe any differences in
the performance of GP for visual (FDK_V) versus Al-
based (FDK_QVIS and FDK_QNIR) FDK estimations. We
compared the PA for five different ST models to predict
four different FHB traits, including FDK_V, FDK_QVIS,
FDK_QNIR, and DON, using a CV approach, representing
a real breeding scenario (Figure 4; Table S2). Overall, the
results using all five ST models were comparable for all the
traits with Bayesian models performing slightly better than
the conventional GBLUP model in a few cases (Figure 4).
For DON, the PA using five models ranged from 0.28 to
0.33 (Table S2), with the Bayes A model performing better
than other models. Further, the PA for manually estimated
FDK_V ranged from 0.11 to 0.15, with the Bayes B model

having the highest PA. Interestingly, the Al-based FDK traits,
FDK_QVIS and FDK_QNIR, had significantly higher PA
using all the models compared to manually estimated FDK_V
(Figure 4). For instance, the PA for QVIS ranged from 0.35
using BRR to 0.37 using Bayes B. Similarly, for FDK_QNIR,
we observed a slightly higher PA ranging from 0.37 to 0.40
using different ST models (Table S2).

3.4 | Predictive abilities of MT GP models
for FDK

We assessed the predictive abilities of MT GP for FDK_V,
FDK_QVIS, and FDK_QNIR with PH, HD, and/or DIS as
secondary traits in the MT model. For comparisons, ST-
GBLUP was used as a benchmark model. The PA using
different combinations of covariates is presented in Figure 5
and Table S3. For FDK_V, we observed a significant increase
in PA using DIS as a secondary trait in the MT model (0.25)
as compared to ST-GBLUP (0.11) (Figure 5). However, we
did not see any improvement in PA for FDK_V while using
HD and PH in the MT model. Further, the MT model showed
only slight improvement in PA for FDK_QVIS when DIS was
incorporated as a secondary trait. However, the inclusion of
DIS into MT model to predict FDK_QNIR further increased
the PA from 0.39 (ST GBLUP) to 0.46 (Figure 5). Never-
theless, we observed that the highest PA for FDK_V using
MT GP models was 0.25, which was significantly lower even
than the PA for FDK_QVIS/FDK_QNIR using the baseline
ST-GBLUP model, suggesting the usefulness of automated
phenotyping for GP.

3.5 | MT models for DON with different
combinations of traits

The MT model for DON included a variety of combinations
of traits as covariates, including agronomic traits, DIS, and
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FIGURE 4 Boxplots comparing the predictive ability (PA) for four different Fusarium head blight (FHB) traits using five different single-trait

genomic prediction models. The four traits included three types of FDK estimated using different methods and deoxynivalenol (DON). BRR,

Bayesian ridge regression; GBLUP, genomic BLUP.

different types of FDK traits. Here, we were intrigued to see
if the inclusion of Al-based FDK in the MT model is better
than manually estimated FDK for the prediction of DON. The
ST-GBLUP for DON (PA = 0.32) was used as a baseline to
compare any improvement using the MT models. In general,
we saw a significant increase in PA using the MT model com-
pared to the baseline ST model (Figure 6A; Table S4). Among
various agronomic traits as covariates in the MT model, inclu-
sion of HD increased the PA for DON to 0.39. We did not see
any significant improvement in PA for DON while using DIS
or manual FDK (FDK_V) as secondary traits (Figure 6A).
Interestingly, we observed a significant leap in PA when Al-
based FDK traits were introduced in the MT model for DON.
Though the inclusion of one secondary trait like FDK_QNIR
in the MT model yielded a PA of 0.40 for DON; how-
ever, inclusion of both FDK_QVIS and FDK_QNIR raised
the PA to 0.45, suggesting around 45% improvement over
the baseline ST model. Moreover, the PA reached up to
0.49 when Al-based FDK traits were combined with HD,
resulting in around 50% improvement over the ST-GBLUP
(Figure 6A).

3.6 | Hyperspectral image bands assisted
MT models in predicting DON

We studied the usefulness of hyperspectral wavebands as a
substitute for agronomic or FDK traits in the MT model. As
described in the methods, 196 wavebands were extracted from
hyperspectral images of the sampled kernels that were later
used for the prediction of DON. We estimated the Pearson

correlation between 196 bands and the DON value of each
sample and observed a moderate correlation for several bands
representing different wavelengths (Figure S3).

From 196 wavebands, we chose 10 different bands (Bands
1,7,27,36,45,58, 68, 80, 170, and 193) representing a variety
of wavelength ranges, based on correlation with DON and the
collinearity among the hyperspectral wavebands. The selected
10 bands were then evaluated as covariates in the MT GP
in different combinations (Figure 6B). Initially, each of the
10 wavebands was included individually as secondary traits
in the bivariate MT model. Subsequently, only six of the 10
wavebands (Bands 1, 7, 58, 80, 170, and 193), and, finally, all
10 bands were used as covariates in the MT model. While the
10 bands were tested one by one in the MT model, two bands
showed a significant increase in PA for DON, with Band 170
yielding a PA of 0.41 and Band 68 resulting in a PA of 0.40
(Figure 6B). Further, for a comprehensive evaluation, all 10
bands were collectively employed in the full MT model to
assess PA, but we did not observe substantial improvement
(0.37) (Figure 6B; Table S5). Interestingly, when only a sub-
set of six bands (selected based on correlation) was included
in the model, the PA reached 0.43 compared to 0.31 in case
of the ST-GBLUP model (Figure 6B).

3.7 | Phenomic prediction for DON based on
hyperspectral imaging

Finally, we used the hyperspectral wavebands obtained from
984 images of flour samples in the phenomic prediction
of DON using a DL prediction model. Here, no genomic
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FIGURE 5

Predictive ability

The predictive ability of three types of Fusarium-damaged kernels (FDK) traits using a multi-trait genomic prediction model with

different combinations of secondary traits. The horizontal bars represent the mean predictive ability (PA), and the red error bars show the respective

standard error. The baseline single-trait model (ST-GBLUP) has been represented using a yellow bar for comparison purposes. The different letters
denote statistically different groups (p < 0.05). DIS, disease index; FDK_QNIR, vision- and spectroscopy-based FDK from QSorter; FDK_QVIS,
vision-based FDK from QSorter; FDK_V, manually estimated FDK; HD, days to heading; PH, plant height.

information was incorporated in the model and DON was
predicted solely based on 196 wavebands using a 1D-CNN
model. The prediction performance of the model was deter-
mined using the coefficient of determination (R?) and RMSE
(Figure 7). In the training set, using the 1D-CNN model, we
observed an R? of 0.55 with an RMSE of 3.64 (Figure 7A).
Further, the model was validated on an independent valida-
tion set, where the model yielded R? of 0.45 with RMSE of
4.4 (Figure 7B), thus performing at par with most of the MT
GP models used in this study.

4 | DISCUSSION

Resistance to FHB is essential in varietal development in the
US HWW breeding programs. However, the accurate selec-

tion of traits contributing to FHB resistance in a breeding
program has been hindered by expensive and time-consuming
phenotyping requirements. Furthermore, the short turnaround
time of the winter wheat breeding programs in the north-
ern Great Plains region makes it impractical to select for the
postharvest traits, including FDK and DON. In this study,
we envisaged the integration of GS, phenomics, and ML to
improve the predictive abilities for FDK and DON to assist
the breeders in the improvement of FHB resistance.

FDK, also referred to as visual scabby kernels, is estimated
in most breeding programs by visually comparing the kernels
to a set of standard images or standard samples, making it
highly subjective and prone to human bias (Ackerman et al.,
2022). For instance, we selected a set of 100 samples with
varying FDK levels and got it rated by two different trained
personnel. Interestingly, we observed a correlation of 0.77
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Phenomic prediction of deoxynivalenol (DON) based one-dimensional convolutional neural network (1D-CNN) model employing

196 hyperspectral wavebands from 984 hyperspectral images. The whole set of 984 images was split into two sets (training and testing) in a 70:30

ratio. The 1D-CNN was first trained on the training set and then independently validated on the testing set. The two scatterplots present the model

statistics for the training set (A) and the independent testing set (B). RMSE, root mean square error; RRMSE, relative root mean square error.

between the ratings of two evaluators, clearly suggesting the
possibility of human bias.

In the current study, we utilized a novel Al-assisted
single-kernel analyzer (QSorter Explorer) that uses kernel
morphology (based on visual appearance) extracted from the
three-dimensional images of each kernel along with NIR
spectra of the kernel. We used QSorter to evaluate FDK in

two different ways. At

first, the analyzer used the single-

kernel images to classify the kernels into diseased and healthy
classes based on visual defects and then calculated the FDK
percentage based on two classes (FDK_QVIS). In the sec-
ond approach, the QSorter used visual appearance along with
NIR spectral information from each kernel to classify them
into two classes and obtain FDK (FDK_QNIR). Our results
show that the Al-based FDK estimates (FDK_QVIS and
FDK_QNIR) had slightly higher heritability (0.74) compared
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to manually estimated FDK (FDK_V, 0.71) (Table 1), as pre-
viously reported by Wu et al. (2023) based on analysis of
FDK on bulk seed samples. Similarly, we observed higher
mean FDK using Al-based methods as reported by Acker-
man et al. (2022). Further, our results demonstrate that the
Al-based FDK shows a higher correlation (0.21) with DON
compared to the manually estimated FDK (0.16) (Figure 3E),
as shown in previous reports (Ackerman et al., 2022). Overall,
our study demonstrates that applications of Al- and vision-
based tools are helpful in improving the estimation of FDK
and overcoming the drawbacks associated with the traditional
approach, as suggested by similar studies for other traits in
various crops (Mergj et al., 2024; Mochida et al., 2019; Mutka
& Bart, 2015). Further, precise estimation of FDK provides
room for an opportunity to better exploit GP for this trait.

Next, we compared the PA of ST GP models to predict
FDK_V, FDK_QVIS, and FDK_QNIR. The results from five
GP methods consistently showed that Al-based FDK_QNIR
had the highest PA, with an improvement of about 100% over
manual evaluation FDK_V (Table S2). This improvement in
PA could be due to unbiased and more accurate phenotyping
and thus improved heritability when Al-based phenotyping is
involved. As the PA for FDK_V was lower compared to the PA
for FDK_QVIS and FDK_QNIR in ST GP, we also evaluated
an MT GP model to predict FDK_V using HD and/or DIS as
covariates. Interestingly, even the MT GP models for FDK_V
could not surpass the PA observed for a baseline ST GP
model for Al-based FDK traits (Figure 5). These results sug-
gest the usefulness of exploiting vision-based and automated
phenotyping for FDK and its suitability in GP.

In the second GS approach, we evaluated MT GP models to
assess the PA for DON by incorporating manually estimated
FDK (FDK_V), or FDK derived from an Al-based platform
(FDK_QVIS and FDK_QNIR) along with agronomic traits as
covariates to predict DON. Our results demonstrated around
50% improvement in PA for DON using MT models com-
pared to the baseline ST GBLUP model (Figure 6A; Table
S4), which is in agreement with several previous studies on
exploiting MT GP models for FHB traits (Gaire et al., 2022;
Larkin et al., 2020; Wu et al., 2023; J. Zhang et al., 2022a).
The highest PA was achieved using the MT model having
Al-based FDK traits as covariates. Unlike our findings, Wu
et al. (2023) did not observe any improvement in MT pre-
diction of DON using Al-based FDK and attributed it to the
misclassification of kernels by the neural network. In our
case, the Al-based platform used 3D imaging and NIR spec-
tral information from single kernels, which resulted in better
classification of diseased and healthy kernels, an accurate
estimate of FDK, and eventually a high correlation with the
DON.

Hyperspectral imaging combined with different ML/DL
models has proven to be a promising technology for
automated nondestructive phenotyping of various traits

(Cheshkova, 2022; Li et al., 2014). In our study, we integrated
hyperspectral imaging of kernels harvested from FHB nurs-
ery with MT GP models, as well as used it independently in
the phenomic prediction by directly predicting DON using DL
models. To the best of our knowledge, this is the first study to
evaluate the potential of close-range hyperspectral imaging in
MT GS for DON in wheat.

In the first scenario, we used MT GP to predict DON when
hyperspectral wavebands were used as covariates and no other
agronomic or FHB-related traits (as mentioned in the Meth-
ods section) were included in the MT GP model. As it is
tedious to use all wavebands in building an MT GP model, we
extracted only 10 wavebands from a total of 196 wavebands
based on correlation and representing the complete wave-
length range. We observed a significant increase in PA for
DON when MT GP models included wavebands as covariates;
however, the results suggested that only few wavebands from
certain wavelengths are useful in MT GP models rather than
including all the wavebands (Table S5). Different studies have
recommended different hyperspectral ranges for detection of
fungal infection or Fusarium in wheat. For instance, Berman
et al. (2007) recommend a 420-1000 nm region, whereas
Singh et al. (2007) recommend a 1000-2500 nm region. How-
ever, Cheshkova (2022) reviewed a set of spectral wavelength
ranges for plant disease detection and suggested that specific
ranges/spectra can be more useful for the detection of a vari-
ety of plant diseases in different crop species. In this regard,
our results also indicate the potential of including two selected
wavebands in MT GP models as covariates, which yielded a
comparable PA for DON compared to MT models built with
various agronomic or FHB traits. Nevertheless, further work
is needed to evaluate a wider hyperspectral range to provide
better insights about the most effective wavelength or range
for DON estimation and that would facilitate more efficient
prediction of DON when utilized in MT GP models.

In the second scenario, complete 196 wavebands from 984
images were directly used for phenomic prediction of DON
by leveraging DL based 1D-CNN model. We achieved a
comparable performance for predicting DON using 1D-CNN
in model training (R*> = 0.55) and independent validation
(R*> = 0.45) (Figure 7) to that of different MT GP models
evaluated in the current study (Figure 7). Moreover, the phe-
nomic prediction (R* = 0.45) outperformed all the ST GP
models for DON evaluated in this study (Figure 7; Table S2),
which is in corroboration with recent reports from various
crop species where phenomic prediction performed better or
at par with GP (Adak et al., 2023; Jackson et al., 2023; Robert
et al., 2022; Winn et al., 2023). These findings suggest a
promising avenue for estimating DON based on hyperspectral
imaging, where breeders can quickly inform their selection
based on predicted DON. Though no similar study has been
reported in wheat, Su et al. (2021) investigated the viability of
employing hyperspectral imaging (382-1030 nm) to develop
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a fast and nondestructive methodology for testing DON in bar-
ley kernels. They used full wavelength with locally weighted
partial least squares regression to attain an R of 0.728 and
an RMSE of 3.802, suggesting room for improvement in
wheat. Also, further research based on different materials and
improved modeling is needed to lower the error in DON pre-
diction and exploit this strategy on a routine basis. In general,
our results suggest a potential application of hyperspectral
imaging-based phenomic prediction for DON and necessi-
tate further evaluation for fine-tuning the models by utilizing
larger datasets and more robust DL approaches.

S | CONCLUSION

FHB poses a severe threat to global wheat production and
food safety. However, phenotyping FHB traits such as FDK
and DON is laborious, time-consuming, and expensive, which
hinders breeding efforts to develop FHB-resistant cultivars.
This study shows that Al-assisted phenotyping for FDK could
improve the PA for FDK itself, and for DON when used as a
covariate in MT GP models, demonstrating its potential appli-
cation in wheat breeding. Further, we observed hyperspectral
imaging in conjugation with ML and DL models as a novel
avenue to estimate DON in FHB-infected wheat kernels with
prediction accuracy comparable to GP models, suggesting a
great potential for hyperspectral imaging-assisted phenomic
prediction in improving selection accuracy for these traits in
wheat breeding.
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