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Abstract
Fusarium head blight (FHB) remains one of the most destructive diseases of wheat

(Triticum aestivum L.), causing considerable losses in yield and end-use qual-

ity. Phenotyping of FHB resistance traits, Fusarium-damaged kernels (FDK), and

deoxynivalenol (DON), is either prone to human biases or resource expensive, hinder-

ing the progress in breeding for FHB-resistant cultivars. Though genomic selection

(GS) can be an effective way to select these traits, inaccurate phenotyping remains a

hurdle in exploiting this approach. Here, we used an artificial intelligence (AI)-based

precise FDK estimation that exhibits high heritability and correlation with DON. Fur-

ther, GS using AI-based FDK (FDK_QVIS/FDK_QNIR) showed a two-fold increase

in predictive ability (PA) compared to GS for traditionally estimated FDK (FDK_V).

Next, the AI-based FDK was evaluated along with other traits in multi-trait (MT)

GS models to predict DON. The inclusion of FDK_QNIR and FDK_QVIS with

days to heading as covariates improved the PA for DON by 58% over the baseline

single-trait GS model. We next used hyperspectral imaging of FHB-infected wheat

kernels as a novel avenue to improve the MT GS for DON. The PA for DON using

selected wavebands derived from hyperspectral imaging in MT GS models surpassed
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the single-trait GS model by around 40%. Finally, we evaluated phenomic prediction

for DON by integrating hyperspectral imaging with deep learning to directly predict

DON in FHB-infected wheat kernels and observed an accuracy (R2 = 0.45) com-

parable to best-performing MT GS models. This study demonstrates the potential

application of AI and vision-based platforms to improve PA for FHB-related traits

using genomic and phenomic selection.

Plain Language Summary
Fusarium head blight (FHB) is a devastating disease of wheat and breeding for

resistant cultivars is the best approach to counter this disease. However, complex

phenotyping of various FHB traits makes it harder for breeders to select resistant

cultivars. Our study investigates the usefulness of artificial intelligence (AI)-based

phenotyping in improving the prediction accuracy (PA) of FHB traits in wheat. We

demonstrate that AI-derived Fusarium-damaged kernels phenotype can improve the

prediction of FHB traits using genomic selection. Furthermore, we explored novel

tools like hyperspectral imaging and deep learning for improved prediction of FHB

resistance in wheat. Our results suggest that the application of novel technologies

can be very useful in improving the prediction of FHB traits and can assist wheat

breeders in developing FHB-resistant cultivars.

1 INTRODUCTION

Fusarium head blight (FHB), predominantly caused by Fusar-
ium graminearum Schwabe, is an economically important

fungal disease that adversely affects wheat production in

Canada, the United States, and many other countries (Gilbert

& Tekauz, 2000; McMullen et al., 2012). FHB-infected wheat

spikes give a premature bleaching appearance and affect ker-

nel development, leading to shriveled kernels with reduced

test weight. In addition to grain yield losses, the fungus pro-

duces mycotoxins, primarily deoxynivalenol (DON), which

pose serious health consequences to humans and livestock

if ingested above certain quantities (Miedaner et al., 2017).

Different restrictions and limits have been imposed on the

maximum level of DON allowed in wheat grains and grain

products used for food and feed in most countries includ-

ing the United States and Canada. In the United States, FHB

epidemics have spread to all major wheat-producing states

in the last couple of decades, partially owing to increased

maize acreage and reduced tillage (Gilbert & Haber, 2013;

McMullen et al., 2012).

Fungicides are frequently used to manage FHB; however,

the application of fungicides is quite cumbersome due to a

limited application window for the successful management of

the disease (McMullen et al., 2012). Further, increased costs

and potential environmental impact due to fungicides make

the development and deployment of FHB-resistant cultivars

the most effective and environment-friendly approach to man-

age and minimize the losses caused by FHB. In the context of

FHB, resistance is highly polygenic and influenced by envi-

ronmental factors. In general, the genetics of FHB resistance

have been categorized as type I (resistance to initial infec-

tion), type II (resistance to fungal spread across the wheat

head), and type III (low mycotoxin accumulation) (Bai et al.,

2018). However, only type II resistance has been extensively

characterized and exploited in breeding programs as it is the

easiest to assess compared with other types (Bai & Shaner,

2004). Furthermore, a large number of quantitative trait loci

(QTL) associated with FHB resistance have been identified,

including some important genes like Fhb1; however, only a

few have been successfully incorporated into wheat breeding

programs (Bai et al., 2018; Steiner et al., 2017; Venske et al.,

2019; J. Zhang et al., 2022b). In the US hard winter wheat

(HWW) growing region, native resistance QTL have served

as the major source of FHB resistance and played an impor-

tant role in alleviating HWW FHB losses in the Great Plains

(J. Zhang et al., 2022b). Conversely, the small effect of native

QTL has limited the applications of marker-assistant selection

(MAS) in developing FHB-resistant HWW varieties.

In addition to the complex quantitative inheritance, the

winter wheat breeders in the Northern Great Plains of the

United States face another challenge of shorter turnaround

cycles, which makes it almost impossible to evaluate and

select for FHB resistance based on postharvest traits, that is,
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Fusarium damaged kernels (FDK) and DON, which further

hinders breeding efforts to develop resistant cultivars (Figure

S1). To overcome this limitation, genomic selection (GS) can

be an effective alternative that provides an opportunity for

the breeders to predict/select for low FDK and DON, which

are otherwise challenging to phenotype in an appropriate time

frame.

GS is an approach that estimates the genetic worth of an

individual based on genome-wide markers (Heffner et al.,

2009; Meuwissen et al., 2001). Rather than relying on a few

selected markers as in MAS, GS uses genome-wide mark-

ers in a population jointly to predict the breeding values

of individuals (Meuwissen et al., 2001). Plant breeders are

increasingly evaluating and adopting GS in their breeding

programs (Calvert et al., 2020; Gill et al., 2021, 2023; Lado

et al., 2018; Moreno-Amores et al., 2020). Multiple studies

have reported successful evaluation or implementation of GS

in different crops, including wheat, indicating the immense

potential of GS in plant breeding (Bhat et al., 2016; Gill et al.,

2023; Juliana et al., 2017; Lado et al., 2018; Poland et al.,

2012). Further, GS has been evaluated and shown promising

for FHB resistance in wheat in several studies (Arruda et al.,

2015; Dong et al., 2018; Larkin et al., 2020; Mirdita et al.,

2015; Rutkoski et al., 2012; Verges et al., 2020; W. Zhang

et al., 2021; J. Zhang et al., 2022a). Despite the successful

evaluation of GS for FHB resistance in general, the implemen-

tation in the breeding programs remains a challenge owing to

the lower predictive ability (PA) of genomic prediction (GP)

models for these traits.

The PA depends on several factors including the nature and

size of training population (TP), accurate phenotyping, trait

heritability, and statistical models used (Gill et al., 2021).

Accurate and efficient phenotyping for FDK remains a key

factor for streamlining the GS in the FHB-resistance breeding

program. However, FDK phenotyping usually uses two tradi-

tional approaches involving manual enumeration of FDK by

physical separation of healthy and diseased kernels or visual

estimation of FDK using a set of standards (Agronomic Crops

Network, n.d.). Most breeding programs adhere to the visual

estimation as it is relatively faster. However, this method is

subjective, highly prone to human bias, and results in inaccu-

rate measurements, lower repeatability, and lower heritability

estimates. Subsequently, inaccurate phenotyping remains a

bottleneck and limits the exploitation of GS for FDK and

DON. Therefore, there is a need to supplement the GP models

with emerging phenomics technologies and machine learning

(ML) approaches to improve the PA for traits like FDK and

DON (Ackerman et al., 2022; Gaire et al., 2022; Rutkoski

et al., 2012; Wu et al., 2023).

In recent years, a few studies have been carried out to

evaluate alternative automated and artificial intelligence (AI)-

based methods to obtain FDK employing spectroscopy or

image-based approaches (Ackerman et al., 2022; Barbedo

Core Ideas
∙ Vision and artificial intelligence (AI)-based tech-

nology provide an effective way to phenotype

Fusarium-damaged kernels (FDK) in wheat.

∙ Inclusion of AI-based FDK as a covariate in

multi-trait genomic prediction models yields high

predictive ability for deoxynivalenol (DON).

∙ Hyperspectral imaging can be leveraged to

improve the predictive ability of DON using

genomic prediction as well as for direct phenomic

prediction.

et al., 2015; Delwiche et al., 2019; Maloney et al., 2014;

Wu et al., 2023). Notably, Ackerman et al. (2022) used an

AI-powered platform (Vibe QM3i) that uses 2D imaging of

kernels in bulk and exploits morphological features to esti-

mate FDK. On the other hand, Wu et al. (2023) incorporated

deep learning (DL) to estimate FDK in infected samples.

Overall, these studies have shown some improvement in the

accuracy of obtaining FDK compared to the manual method,

but each approach has its limitations. In the current study, we

estimated FDK using a highly accurate AI-assisted automated

sorter (QSorter Explorer) that has been previously used for

single kernel–based phenotyping of complex traits in differ-

ent species (Alvarez et al., 2021; Armstrong et al., 2017; Davis

et al., 2021; Rupenyan et al., 2016). QSorter Explorer has been

trained to automatically sort the diseased and infected ker-

nels by extracting kernel morphology as well as spectroscopy

based on single kernels and enumerating FDK value for the

sample using ML models. Here, we assess the PA of GP mod-

els for AI-based FDK in comparison to traditionally estimated

visual FDK.

Further, DON is another important trait for improving FHB

resistance in wheat. However, quantifying DON levels within

grain samples is cumbersome and expensive, involving tech-

niques like enzyme-linked immunosorbent assays or mass

spectrometry (MS), and could not be performed within the

short turnaround time in a breeding cycle, thus limiting the

opportunities to enable selection for lower DON levels (Gaire

et al., 2022). Recently, several simulated and empirical stud-

ies evaluated multi-trait (MT) GP models that can leverage

genetic correlations among different traits to improve PA

for traits of interest (Gaire et al., 2022; Gill et al., 2021;

Lado et al., 2018; J. Zhang et al., 2022a). Multiple studies

have incorporated traits like days to heading, plant height

(PH), and/or FDK as a covariate in MT models to predict

DON (Gaire et al., 2021; Larkin et al., 2020; Moreno-Amores

et al., 2020; Schulthess et al., 2018; Steiner et al., 2017) and

shown some improvement in the PA. Overall, these studies

emphasized that FDK stands out to be the most important
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secondary trait to predict DON in MT models, and MT models

consistently demonstrated superior performance compared to

single-trait (ST) GS. This creates novel avenues to evaluate

MT GP models for DON using more accurate AI-based FDK

estimates as covariates.

In addition to high-throughput robotics, various spectro-

scopic techniques have also been used recently to assist

the phenotyping of complex traits in different crop species

(Kalendar et al., 2022; Li et al., 2014). Unlike traditional spec-

troscopy techniques, hyperspectral imaging represents a novel

nondestructive analytical approach that provides the ability

to measure traits across a wide range of wavebands simul-

taneously, enhancing the analytical potential (Alvarez et al.,

2021). Many studies have used hyperspectral imaging to assist

phenotyping for a variety of traits in several crops, includ-

ing FDK (Delwiche et al., 2011; Femenias et al., 2021; Shao

et al., 2020). Further, these phenomics approaches have been

integrated with ML and DL models to predict a variety of

agronomic traits (Alzubaidi et al., 2021; Araus et al., 2018;

Jackson et al., 2023; Robert et al., 2022). Nevertheless, there

has been no report of utilizing hyperspectral imaging of FHB-

infected kernels coupled with GP to predict DON content. In

the current study, we assessed the potential of hyperspectral

imaging in improving the PA for DON by integrating it into

the MT GP models. Further, several studies in wheat and other

crops have suggested that phenomic prediction using image-

based spectral features can be equally effective or even surpass

the performance of GS (Adak et al., 2023). Hence, it is intrigu-

ing to integrate hyperspectral imaging with ML/DL models

to predict DON without relying on genomic information and

avoiding tedious and expensive gas chromatography method.

The primary goal of this study was to integrate genomics

and phenomics with ML methods to improve the prediction

of FDK and DON in HWW to facilitate breeders in the selec-

tion of genotypes with low FDK and low DON. Based on

this, the specific objectives of the study were (a) evaluating

the PA of GP models using high-throughput phenotyping-

derived FDK estimates, (b) assessing the performance of MT

GS models including AI-based FDK estimates as secondary

traits to predict DON, (c) evaluating the incorporation of spec-

tral information derived from hyperspectral imaging in MT

GS models for DON prediction, and (d) evaluating direct use

of the hyperspectral wavebands for phenomic prediction of

DON via ML.

2 MATERIALS AND METHODS

2.1 Plant materials and phenotyping for
FHB traits

To predict lines from earlier generations for FDK and DON,

we used a diverse set of 250 breeding lines (F4:9 /F4:8 /F4:7

filial generation) from the winter wheat breeding program at

South Dakota State University (SDSU). Four common FHB

check cultivars including Emerson and Everest as the resistant

controls and Flourish and Overley as the susceptible controls

were used for FHB evaluation. Based on quality control (QC)

of the genotype data, four lines were not used in downstream

analysis.

The plant materials were planted in two independent exper-

iments/FHB Field nurseries in 2022 at SDSU Agricultural

Experimental Stations located in Brookings and Volga, SD.

The planting and harvesting dates were September 30, 2021,

and July 28–29, 2022, respectively. The set of 250 lines was

planted in a randomized complete block design with two repli-

cations in each of the FHB nurseries. The experimental unit

consisted of a 1 m single-row plot with approximately 60

plants/row. Days to heading (HD) were recorded as Julian days

when 50% of the plants in each row had completely emerged

heads. PH was measured at maturity as the distance from the

surface of the soil to the apex of the primary tiller excluding

awns.

The disease nurseries were inoculated with Fusarium
graminearum-infested corn spawn (isolate SD-FG1) as pre-

viously described in Halder et al. (2019). In brief, the infested

corn spawn was uniformly spread at stage Feekes 10 and

then at Feekes 10.1 to maximize the infection. In addition,

to minimize disease escape, the lines were tagged at anthe-

sis, and wheat heads were sprayed with a conidial suspension

comprising 100,000 spores/mL at 50% anthesis. The field

was mist irrigated using a sprinkler system every night (7:00

p.m. to 7:00 a.m.) for 2 min (every 10 minutes) to main-

tain high humidity and favor disease development. Phenotypic

data were collected for disease incidence and severity 21

days postinoculation on at least 20 heads per row (each

genotype) using the scale described by Stack and McMullen

(2011). Disease incidence and severity were used to cal-

culate disease index (DIS) as (incidence (INC) × severity

(SEV)/100.

Two postharvest FHB traits, namely FDK and DON, were

recorded after harvesting the rows using a low airspeed

thresher. FDK was measured using two different strate-

gies. The first strategy involved trained personnel sampling

the kernels for each line (in two technical replicates) and

comparing them against a set of known FDK standards (Agro-

nomic Crops Network, n.d.) to estimate the percentage FDK

(referred to as FDK_V hereafter). The second strategy used an

AI-based automated seed sorter (QSorter Explorer) for mea-

suring FDK based on two different algorithms. The QSorter

Explorer is a sophisticated robot for single kernel analysis

and sorting powered by cutting-edge mechatronics and AI

(Figure 1A). Briefly, the QSorter Explorer uses a 3D vision

sensor and a high-resolution near infrared (NIR) spectrome-

ter to inspect each kernel and further uses AI-based models to

sort healthy and diseased kernels in real-time. We employed
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F I G U R E 1 Visual representation of the phenotyping platform for (A) Fusarium-damaged kernels (FDK) using QSorter Explorer and (B)

deoxynivalenol (DON) using hyperspectral imaging.

QSorter in two ways to estimate FDK. First, we employed

only a 3D imaging sensor to inspect each kernel and obtain

the FDK value (FDK_QVIS). Second, both the 3D sensor

and NIR spectrometer of the QSorter were used to inspect the

appearance and spectral information for each kernel to esti-

mate the FDK percentage (FDK_QNIR). In addition to FDK,

the samples were also subjected to estimation of DON content

(ppm) using the gas chromatography-MS method (Simsek

et al., 2013) at the Department of Plant Science, North Dakota

State University.

2.2 Statistical analysis of the phenotype
data

All the statistical analyses were performed in R statistical

programming language (R Core Team, 2018) using different

libraries. For the experimental design, best linear unbiased

estimates (BLUEs) for various traits were estimated using the

following model:

𝑦𝑖𝑗 = 𝜇 + 𝐸𝑖 + 𝐺𝑗 + 𝑒𝑖𝑗

here 𝑦𝑖𝑗 is the trait of interest, 𝜇 refers to overall mean, 𝐸𝑖

denotes the random effect of the ith experiment (referring to

independent FHB nursery as two technical replicates within

a nursery were averaged), 𝐺𝑗 is the fixed effect of the jth
genotype, and 𝑒𝑖𝑗 refers to the residual error effect of the

ith experiment and jth genotype. The broad-sense heritabil-

ity (H2) for FHB traits was estimated by fitting the genotypic

effect from above equation as random using the following

formula:

𝐻2 =
𝜎2𝑔

𝜎2𝑔 + 𝜎2𝑒∕𝑛Exp

where 𝜎2𝑔 and 𝜎2𝑒 are the genotype and error variance

components, and nExp refers to the number of experi-

ments/nurseries. The above analysis was performed in R

using the “MrBean” platform (Aparicio et al., 2023) based on

“lme4” package (Bates et al., 2015). The correlations among

traits were estimated and visualized based on the BLUEs for

each trait using the psych library in R (William, 2024). All the

model comparisons were visualized using “ggplot2” package

in R (Wickham, 2016).

2.3 Genotyping-by-sequencing

The breeding lines were genotyped using genotyping-by-

sequencing (GBS) as previously described (Gill et al.,

2022). In brief, leaf tissues were used for DNA isola-

tion using the hexadecyltrimethylammonium bromide method

(Doyle & Doyle, 1987) and GBS libraries were pre-

pared using the PstI and MspI restriction enzymes as

described by Poland et al. (2012) and sequenced at the

USDA Central Small Grain Genotyping Lab, Manhat-

tan, KS. The sequencing data were used to call single-

nucleotide polymorphisms (SNPs) (Bradbury et al., 2007)

using IWGSC Chinese Spring (CS) RefSeq v2.1 as the
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reference genome (Zhu et al., 2020). For QC, the SNPs

with more than 30% missing values, minor allele frequency

of <5%, and unmapped on a specific chromosome were

removed, which yielded a total of 10,644 high-quality SNPs.

Those SNPs were imputed for missing datapoints using BEA-

GLE v4.1 (Browning & Browning, 2007) for further analysis.

The principal component analysis (PCA) was performed for

the genotypic data using “SNPRelate” package and visualized

using “ggplot2” in R (Wickham, 2016).

2.4 GP models

2.4.1 Single-trait GP models

The ST genomic prediction for FDK and DON was performed

using five different algorithms. The genomic BLUP (GBLUP)

model (VanRaden, 2008) is the widely used GS model in plant

breeding and used as a benchmark for comparison with other

models. The GBLUP was implemented using a linear mixed

model presented in the following equation:

𝐲 = 𝟏𝜇 + 𝐙𝐮 + 𝐞

where y is the vector (n × 1) of BLUE values for each trait;

μ is the overall mean; Z is the incidence matrix for geno-

type effects; u is a random vector of genetic values with

𝐮 ∼ 𝐍(0, 𝐆𝜎2𝑔 ), where G is the genomic relationship matrix

(VanRaden, 2008) and 𝜎2𝑔 is the additive genetic variance; and

e is the vector of residual errors with 𝐞 ∼ 𝐍(0, 𝜎2𝑒 ).
Apart from GBLUP, four commonly used Bayesian mod-

els, Bayes A (BA), Bayes B (BB), Bayes C (BC), and Bayesian

ridge regression (BRR), were used for ST GP (Habier et al.,

2011; Meuwissen et al., 2001; Pérez & De Los Campos,

2014). In contrast to GBLUP, the Bayesian models assume

different prior distributions for estimating marker effects

and variances overcomes the limitation of GBLUP, that is,

homogenous shrinkage of marker effects (Lorenz et al., 2011;

Pérez & De Los Campos, 2014), and these models have been

widely evaluated for prediction of complex traits. A detailed

account of the abovementioned Bayesian methods can be

found in Montesinos-López et al. (2022).

All the ST models were implemented in R package

“BGLR” with 5000 burn-ins and 15,000 iterations

(https://github.com/gdlc/BGLR-R/blob/master/inst/md/

GBLUP.md)(Pérez & De Los Campos, 2014).

2.4.2 Multi-trait GP

An MT GP model was used with the trait of interest

(FDK/DON) as primary trait and combination(s) of other

traits as covariates. The model can be expressed as:

⎡⎢⎢⎣
𝐲1
⋮
𝐲𝑛

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝐈
⋮
0

0
⋮
𝐈𝑛

⎤⎥⎥⎦
⎡⎢⎢⎣
μ1
⋮
μ𝑛

⎤⎥⎥⎦ +
⎡⎢⎢⎣
𝐙
⋮
0

0
⋮
𝐙𝑛

⎤⎥⎥⎦
⎡⎢⎢⎣
𝐠1
⋮
𝐠𝑛

⎤⎥⎥⎦ +
⎡⎢⎢⎣
𝐞1
⋮
𝐞𝑛

⎤⎥⎥⎦
where y is the n-dimensional vector of BLUEs for n traits,

I and Z are the design matrices, 𝜇𝑡, t = 1 . . . n, refers to

trait intercepts of n traits, [
𝐠1
⋮
𝐠𝑛
] are the predicted genetic val-

ues assumed to be distributed as ∼ 𝐌𝐕𝐍(0,∑⊗𝐆) with G
representing the genomic relationship matrix obtained follow-

ing VanRaden (2008). The residuals of the MT model were

assumed to be normally distributed as [
𝐞1
⋮
𝐞𝑛
]∼ 𝐌𝐕𝐍(0,𝐑⊗ 𝐈).

The matrices
∑

and R are the variance–covariance matrices

for the genetic and residual effects between traits, with
∑

esti-

mated as an unstructured variance–covariance matrix and R
as a diagonal variance–covariance matrix. The MT model was

implemented using the “MTM” package in an R environment

(de los Campos & Grüneberg, 2016), employing the Gibbs

sample algorithm with 15,000 iterations and 5000 burn-ins.

2.4.3 Combination of traits for MT model

We evaluated MT GP for three FDK estimates (FDK_V,

FDK_QVIS, and FDK_NIR) by using them as primary traits

and HD, PH, and/or DIS as secondary traits. Similarly, the

MT model was used to evaluate PA for DON using a variety

of combinations of secondary traits. For DON, we used HD,

PH, and/or DIS as secondary traits. Thereafter, we expanded

the combinations of secondary traits by including three types

of FDK estimates (FDK_V, FDK_QVIS, and FDK_QNIR)

along with HD, PH, and/or DIS. Finally, we evaluated a set of

hyperspectral wavebands representing a wide range of wave-

lengths as secondary traits and DON as a primary trait in

the MT model. Altogether, 21 different combinations of sec-

ondary traits were used in the MT model to predict DON.

All the MT models were compared to the ST GBLUP model

using Fisher’s least significance difference test with Bonfer-

roni correction using “agricolae” library in R (de Mendiburu,

2023).

2.4.4 Cross-validation for GP models

The PAs of the GP models were assessed by calculating the

correlation between genome-estimated breeding values and

the observed phenotypic values of individuals in a testing

set using a cross-validation (CV) scheme. These CV schemes
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7 of 17 THAPA ET AL.The Plant Genome

were followed based on real scenarios observed in plant breed-

ing experiments. An 80:20 random CV approach, CV1, was

used to evaluate the ST models, where 80% of the lines were

used as the training set (had genotypic and phenotypic data) to

train the model, and the remaining 20% were used as the test-

ing set (only genotypic data) for prediction with 100 random

repetitions. The PA of MT model was assessed using the CV2

scheme, where lines were split into an 80:20 ratio with 80%

used as the training set, and the remaining 20% as the testing

set (Gill et al., 2022). To train the model, we used genotypic

data and the phenotypic data of the primary trait for the train-

ing set, along with phenotypic data of the secondary traits for

training as well as the testing set with the objective of pre-

dicting the primary trait of the testing set. As fitting an MT

model with several traits is quite extensive, we used 50 ran-

dom repetitions of the CV2 approach to assess PA. Both the

CV schemes have been illustrated and successfully employed

in previous studies (Gaire et al., 2021).

2.5 Hyperspectral imaging and extraction
of indices

A close-range indoor hyperspectral imaging system, SPECIM

IQ camera (SPECIM), was used to capture hyperspectral

images of FHB-infected wheat kernel samples (Figure 1B).

It has a wavelength range of 397–1004 nm, a spatial res-

olution of 512 × 512 pixels, and a spectral resolution of

7 nm. It can capture hyperspectral imagery, radiometric cal-

ibration, data processing, and visualization. Hyperspectral

imagery of the samples was collected indoors with halogen

illumination. White reference panel (i.e., Lambertian surface)

with SPECIM IQ imaging system was captured simultane-

ously with each sample during the image collection. This

white reference data were used to transform the hyperspec-

tral raw imagery digital numbers to reflectance values. This

transformation was performed automatically based on built-

in functions. A total of 492 samples (246 genotypes in

two replicates) were scanned using the SPECIM IQ camera,

and each sample was imaged twice, making a total of 984

images.

The hyperspectral image cubes obtained from the SPECIM

IQ camera were in the form of radiometrically corrected

reflectance data. Due to the high noise levels, a few bands

were removed from the reflectance images, leaving 196 spec-

tral wavebands/indices. From each hyperspectral reflectance

image, a region of interest (ROI) (i.e., 250 × 250 pixels),

which only includes wheat kernel pixels, was extracted and

used for further analysis. The average pixel values for each

ROI chip image cube were further calculated and used as input

variables for a one-dimensional convolutional neural network

(1D-CNN) DL model that requires 1D input data.

2.6 Phenomic prediction model building
and evaluation

The CNN algorithm is one of the most well-known and clas-

sical approaches in DL (Alzubaidi et al., 2021; Zhou, 2020).

It can often learn spatial, temporal, and spectral patterns from

input data, demonstrating superior performance to fully con-

nected feed-forward deep neural network and conventional

ML methods in many applications (Gu et al., 2018). Here, we

investigate the potential of 1D-CNN to predict DON solely

based on hyperspectral wavebands. 1D-CNN is often used

for cases with 1D input variables; it can efficiently learn the

sequential or spectral patterns and extract essential features

from 1D input variables. In the current study, the input vari-

ables are 1D spectral profiles averaged from the wheat kernel

hyperspectral chip images.

As shown in Figure 2, the optimal 1D-CNN architecture

was selected after investigating a variety of different archi-

tectures. Batch normalization of feature maps was employed.

It often can effectively avoid gradient issues to potentially

improve model performance (Ioffe & Szegedy, 2015). In

addition, a dropout function was also incorporated to avoid

overfitting issues. Rectified linear unit activation function was

used in the convolutional and fully connected dense layers of

DL architectures, and linear activation functions were adopted

in the output layer. The samples were randomly split into

training (70%) and testing (30%). The 30% unseen testing

data were used to evaluate the model performance. Hyperpa-

rameter tuning was carried out during the training phase of

1D-CNN model. Optimal learning rate, dropout rate, batch

size, and so on, were selected to achieve the best model

performance.

The performance of the model was evaluated using metrics

such as root mean square error (RMSE) (Equation 1), rela-

tive root mean square error (RMSE%) (Equation 2), and the

coefficient of determination (R2) (Equation 3). Here, yi and ŷi
refer to the measured and the predicted wheat DON content

values, ȳ is the mean of measured wheat DON content values,

and n is the total number of samples in the testing set.

RMSE =

√∑𝑛
𝑖=1

(
yi − 𝑦𝑖

)2
𝑛 − 1

(1)

RMSE% = RMSE
𝑦̄

× 100 (2)

𝑅2 =

√√√√√√1 −

∑𝑛
𝑖=1

(
yi − ŷi

)2

∑𝑛
𝑖=1(yi − 𝑦̄)2

(3)
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THAPA ET AL. 8 of 17The Plant Genome

F I G U R E 2 The input dimension, architecture, and output of the one-dimensional convolutional neural network (1D-CNN) deep learning

model. N represents the number of samples used for model training or testing. BN represents batch normalization. DON, deoxynivalenol.

F I G U R E 3 (A–D) Phenotypic distribution of different agronomic and Fusarium head blight traits using violin plots. (E) Pearson correlation

coefficients among investigated traits using the best linear unbiased estimates (BLUEs) for various traits. The lower triangle shows the bivariate

scatterplots with fitted lines and the upper triangle elucidates the correlation coefficients. Statistically significant differences are denoted by an

asterisk (*) where *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001. DIS, disease index; DON, deoxynivalenol; FDK_QNIR, vision- and spectroscopy-based

FDK from QSorter; FDK_QVIS, vision-based FDK from QSorter; FDK_V, manually estimated FDK; HD, days to heading; PH, plant height.

The epoch was set to 50 (50, 100, and 150 were tested), and

the batch size was set to 32 (16, 24, and 32 were tested).

3 RESULTS

3.1 Phenotypic variation, correlation, and
heritability for FHB traits

A significant variation was observed among the tested geno-

types for all three FHB traits, namely, DIS, FDK, and DON

(Figure 3A–D; Table 1). In general, broad sense heritabil-

ity (H2) was moderate to high for various FHB traits and

ranged from 0.68 for DON to 0.79 for DIS (Table 1). As

described in the methods, we estimated FDK using three dif-

ferent methods. The H2 for AI-based FDK (FDK_QVIS and

FDK_QNIR) was relatively higher than manually estimated

FDK_V (Table 1). Moreover, we did observe a difference in

the range of FDK among the three estimation methods. A

higher mean FDK (FDK_QNIR; 75.40%) was observed using

an AI-based method compared to FDK_V (53.85%) (Table 1).

A significant correlation was recorded between different sets

of traits including among three FDK estimates as expected

(Figure 3E). Overall, FDK showed a positive correlation with

HD, DIS, and DON (Figure 3E). DON was positively cor-

related with HD and DIS, while negatively correlated with
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9 of 17 THAPA ET AL.The Plant Genome

T A B L E 1 Summary statistics and broad-sense heritability (H2) of various agronomic and Fusarium head blight traits. The estimates for genetic

and residual variance were obtained from the mixed linear model for respective traits.

Trait Mean H2 SD Genetic variance (σ2
g) Residual variance (σ2

e)
Days to heading

(Julian days)

163.58 0.85 1.36 1.56 0.39

Plant height (cm) 90.57 0.73 4.92 2.84 1.51

Disease index (%) 31.63 0.79 10.22 80.12 40.30

FDK_V (%) 53.85 0.71 11.91 100.96 82.03

FDK_QVIS (%) 66.49 0.74 10.30 78.42 55.36

FDK_QNIR (%) 75.40 0.74 12.55 116.70 81.96

DON (ppm) 12.08 0.68 4.58 13.93 11.99

Abbreviations: DON, deoxynivalenol; FDK_QNIR, vision- and spectroscopy-based FDK from QSorter; FDK_QVIS, vision-based FDK from QSorter; FDK_V, manually

estimated FDK; SD, standard deviation.

PH. Interestingly, we found a significantly higher positive

correlation between DON and AI-based FDK_QNIR (0.21)

compared to FDK_V (0.16).

3.2 Genotyping analysis

GBS of 250 breeding lines yielded a total of 10,644 high-

quality SNP markers covering all 21 wheat chromosomes

(Table S1). The highest number of SNPs were found in the

B genome (4721), followed by the A genome (4124) and

D genome (1799). PCA was performed using all the SNPs

to investigate any stratification in the population and ver-

ify the relationship among lines from different stages of the

breeding cycles (Figure S2). The first and second components

explained 5.58% and 5.28% of the total variance, respectively.

Strong population structure was not observed, suggesting

close genetic relationships among the lines in the panel and

the suitability of this panel for evaluating GP models.

3.3 Single-trait GP for FDK and DON

The first objective of the study was to evaluate ST GP

for different FHB traits and observe any differences in

the performance of GP for visual (FDK_V) versus AI-

based (FDK_QVIS and FDK_QNIR) FDK estimations. We

compared the PA for five different ST models to predict

four different FHB traits, including FDK_V, FDK_QVIS,

FDK_QNIR, and DON, using a CV approach, representing

a real breeding scenario (Figure 4; Table S2). Overall, the

results using all five ST models were comparable for all the

traits with Bayesian models performing slightly better than

the conventional GBLUP model in a few cases (Figure 4).

For DON, the PA using five models ranged from 0.28 to

0.33 (Table S2), with the Bayes A model performing better

than other models. Further, the PA for manually estimated

FDK_V ranged from 0.11 to 0.15, with the Bayes B model

having the highest PA. Interestingly, the AI-based FDK traits,

FDK_QVIS and FDK_QNIR, had significantly higher PA

using all the models compared to manually estimated FDK_V

(Figure 4). For instance, the PA for QVIS ranged from 0.35

using BRR to 0.37 using Bayes B. Similarly, for FDK_QNIR,

we observed a slightly higher PA ranging from 0.37 to 0.40

using different ST models (Table S2).

3.4 Predictive abilities of MT GP models
for FDK

We assessed the predictive abilities of MT GP for FDK_V,

FDK_QVIS, and FDK_QNIR with PH, HD, and/or DIS as

secondary traits in the MT model. For comparisons, ST-

GBLUP was used as a benchmark model. The PA using

different combinations of covariates is presented in Figure 5

and Table S3. For FDK_V, we observed a significant increase

in PA using DIS as a secondary trait in the MT model (0.25)

as compared to ST-GBLUP (0.11) (Figure 5). However, we

did not see any improvement in PA for FDK_V while using

HD and PH in the MT model. Further, the MT model showed

only slight improvement in PA for FDK_QVIS when DIS was

incorporated as a secondary trait. However, the inclusion of

DIS into MT model to predict FDK_QNIR further increased

the PA from 0.39 (ST GBLUP) to 0.46 (Figure 5). Never-

theless, we observed that the highest PA for FDK_V using

MT GP models was 0.25, which was significantly lower even

than the PA for FDK_QVIS/FDK_QNIR using the baseline

ST-GBLUP model, suggesting the usefulness of automated

phenotyping for GP.

3.5 MT models for DON with different
combinations of traits

The MT model for DON included a variety of combinations

of traits as covariates, including agronomic traits, DIS, and
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THAPA ET AL. 10 of 17The Plant Genome

F I G U R E 4 Boxplots comparing the predictive ability (PA) for four different Fusarium head blight (FHB) traits using five different single-trait

genomic prediction models. The four traits included three types of FDK estimated using different methods and deoxynivalenol (DON). BRR,

Bayesian ridge regression; GBLUP, genomic BLUP.

different types of FDK traits. Here, we were intrigued to see

if the inclusion of AI-based FDK in the MT model is better

than manually estimated FDK for the prediction of DON. The

ST-GBLUP for DON (PA = 0.32) was used as a baseline to

compare any improvement using the MT models. In general,

we saw a significant increase in PA using the MT model com-

pared to the baseline ST model (Figure 6A; Table S4). Among

various agronomic traits as covariates in the MT model, inclu-

sion of HD increased the PA for DON to 0.39. We did not see

any significant improvement in PA for DON while using DIS

or manual FDK (FDK_V) as secondary traits (Figure 6A).

Interestingly, we observed a significant leap in PA when AI-

based FDK traits were introduced in the MT model for DON.

Though the inclusion of one secondary trait like FDK_QNIR

in the MT model yielded a PA of 0.40 for DON; how-

ever, inclusion of both FDK_QVIS and FDK_QNIR raised

the PA to 0.45, suggesting around 45% improvement over

the baseline ST model. Moreover, the PA reached up to

0.49 when AI-based FDK traits were combined with HD,

resulting in around 50% improvement over the ST-GBLUP

(Figure 6A).

3.6 Hyperspectral image bands assisted
MT models in predicting DON

We studied the usefulness of hyperspectral wavebands as a

substitute for agronomic or FDK traits in the MT model. As

described in the methods, 196 wavebands were extracted from

hyperspectral images of the sampled kernels that were later

used for the prediction of DON. We estimated the Pearson

correlation between 196 bands and the DON value of each

sample and observed a moderate correlation for several bands

representing different wavelengths (Figure S3).

From 196 wavebands, we chose 10 different bands (Bands

1, 7, 27, 36, 45, 58, 68, 80, 170, and 193) representing a variety

of wavelength ranges, based on correlation with DON and the

collinearity among the hyperspectral wavebands. The selected

10 bands were then evaluated as covariates in the MT GP

in different combinations (Figure 6B). Initially, each of the

10 wavebands was included individually as secondary traits

in the bivariate MT model. Subsequently, only six of the 10

wavebands (Bands 1, 7, 58, 80, 170, and 193), and, finally, all

10 bands were used as covariates in the MT model. While the

10 bands were tested one by one in the MT model, two bands

showed a significant increase in PA for DON, with Band 170

yielding a PA of 0.41 and Band 68 resulting in a PA of 0.40

(Figure 6B). Further, for a comprehensive evaluation, all 10

bands were collectively employed in the full MT model to

assess PA, but we did not observe substantial improvement

(0.37) (Figure 6B; Table S5). Interestingly, when only a sub-

set of six bands (selected based on correlation) was included

in the model, the PA reached 0.43 compared to 0.31 in case

of the ST-GBLUP model (Figure 6B).

3.7 Phenomic prediction for DON based on
hyperspectral imaging

Finally, we used the hyperspectral wavebands obtained from

984 images of flour samples in the phenomic prediction

of DON using a DL prediction model. Here, no genomic
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11 of 17 THAPA ET AL.The Plant Genome

F I G U R E 5 The predictive ability of three types of Fusarium-damaged kernels (FDK) traits using a multi-trait genomic prediction model with

different combinations of secondary traits. The horizontal bars represent the mean predictive ability (PA), and the red error bars show the respective

standard error. The baseline single-trait model (ST-GBLUP) has been represented using a yellow bar for comparison purposes. The different letters

denote statistically different groups (p < 0.05). DIS, disease index; FDK_QNIR, vision- and spectroscopy-based FDK from QSorter; FDK_QVIS,

vision-based FDK from QSorter; FDK_V, manually estimated FDK; HD, days to heading; PH, plant height.

information was incorporated in the model and DON was

predicted solely based on 196 wavebands using a 1D-CNN

model. The prediction performance of the model was deter-

mined using the coefficient of determination (R2) and RMSE

(Figure 7). In the training set, using the 1D-CNN model, we

observed an R2 of 0.55 with an RMSE of 3.64 (Figure 7A).

Further, the model was validated on an independent valida-

tion set, where the model yielded R2 of 0.45 with RMSE of

4.4 (Figure 7B), thus performing at par with most of the MT

GP models used in this study.

4 DISCUSSION

Resistance to FHB is essential in varietal development in the

US HWW breeding programs. However, the accurate selec-

tion of traits contributing to FHB resistance in a breeding

program has been hindered by expensive and time-consuming

phenotyping requirements. Furthermore, the short turnaround

time of the winter wheat breeding programs in the north-

ern Great Plains region makes it impractical to select for the

postharvest traits, including FDK and DON. In this study,

we envisaged the integration of GS, phenomics, and ML to

improve the predictive abilities for FDK and DON to assist

the breeders in the improvement of FHB resistance.

FDK, also referred to as visual scabby kernels, is estimated

in most breeding programs by visually comparing the kernels

to a set of standard images or standard samples, making it

highly subjective and prone to human bias (Ackerman et al.,

2022). For instance, we selected a set of 100 samples with

varying FDK levels and got it rated by two different trained

personnel. Interestingly, we observed a correlation of 0.77
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THAPA ET AL. 12 of 17The Plant Genome

F I G U R E 6 (A) Predictive abilities for deoxynivalenol (DON) using multi-trait (MT) genomic prediction models with different combinations

of traits. The x-axis has the predictive accuracy (PA) of different models. The y-axis elucidates the MT models to predict DON when different sets of

combinations of secondary traits were included in the model. The horizontal bars represent the mean PA and the red error bars show the respective

standard error. The baseline single-trait model (ST-GBLUP) has been represented using yellow bar for comparison purposes. The different letters

denote statistically different groups (p < 0.05). (B) Comparison of multi-trait genomic prediction models for DON that used various combinations of

hyperspectral image bands as covariates. The x-axis has the PA of different models. The y-axis elucidates the MT models to predict DON when

different combinations of hyperspectral wavebands as secondary traits were included in model. DIS, disease index; FDK_QNIR, vision- and

spectroscopy-based FDK from QSorter; FDK_QVIS, vision-based FDK from QSorter; FDK_V, manually estimated FDK; HD, days to heading; PH,

plant height.

F I G U R E 7 Phenomic prediction of deoxynivalenol (DON) based one-dimensional convolutional neural network (1D-CNN) model employing

196 hyperspectral wavebands from 984 hyperspectral images. The whole set of 984 images was split into two sets (training and testing) in a 70:30

ratio. The 1D-CNN was first trained on the training set and then independently validated on the testing set. The two scatterplots present the model

statistics for the training set (A) and the independent testing set (B). RMSE, root mean square error; RRMSE, relative root mean square error.

between the ratings of two evaluators, clearly suggesting the

possibility of human bias.

In the current study, we utilized a novel AI-assisted

single-kernel analyzer (QSorter Explorer) that uses kernel

morphology (based on visual appearance) extracted from the

three-dimensional images of each kernel along with NIR

spectra of the kernel. We used QSorter to evaluate FDK in

two different ways. At first, the analyzer used the single-

kernel images to classify the kernels into diseased and healthy

classes based on visual defects and then calculated the FDK

percentage based on two classes (FDK_QVIS). In the sec-

ond approach, the QSorter used visual appearance along with

NIR spectral information from each kernel to classify them

into two classes and obtain FDK (FDK_QNIR). Our results

show that the AI-based FDK estimates (FDK_QVIS and

FDK_QNIR) had slightly higher heritability (0.74) compared
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13 of 17 THAPA ET AL.The Plant Genome

to manually estimated FDK (FDK_V, 0.71) (Table 1), as pre-

viously reported by Wu et al. (2023) based on analysis of

FDK on bulk seed samples. Similarly, we observed higher

mean FDK using AI-based methods as reported by Acker-

man et al. (2022). Further, our results demonstrate that the

AI-based FDK shows a higher correlation (0.21) with DON

compared to the manually estimated FDK (0.16) (Figure 3E),

as shown in previous reports (Ackerman et al., 2022). Overall,

our study demonstrates that applications of AI- and vision-

based tools are helpful in improving the estimation of FDK

and overcoming the drawbacks associated with the traditional

approach, as suggested by similar studies for other traits in

various crops (Meraj et al., 2024; Mochida et al., 2019; Mutka

& Bart, 2015). Further, precise estimation of FDK provides

room for an opportunity to better exploit GP for this trait.

Next, we compared the PA of ST GP models to predict

FDK_V, FDK_QVIS, and FDK_QNIR. The results from five

GP methods consistently showed that AI-based FDK_QNIR

had the highest PA, with an improvement of about 100% over

manual evaluation FDK_V (Table S2). This improvement in

PA could be due to unbiased and more accurate phenotyping

and thus improved heritability when AI-based phenotyping is

involved. As the PA for FDK_V was lower compared to the PA

for FDK_QVIS and FDK_QNIR in ST GP, we also evaluated

an MT GP model to predict FDK_V using HD and/or DIS as

covariates. Interestingly, even the MT GP models for FDK_V

could not surpass the PA observed for a baseline ST GP

model for AI-based FDK traits (Figure 5). These results sug-

gest the usefulness of exploiting vision-based and automated

phenotyping for FDK and its suitability in GP.

In the second GS approach, we evaluated MT GP models to

assess the PA for DON by incorporating manually estimated

FDK (FDK_V), or FDK derived from an AI-based platform

(FDK_QVIS and FDK_QNIR) along with agronomic traits as

covariates to predict DON. Our results demonstrated around

50% improvement in PA for DON using MT models com-

pared to the baseline ST GBLUP model (Figure 6A; Table

S4), which is in agreement with several previous studies on

exploiting MT GP models for FHB traits (Gaire et al., 2022;

Larkin et al., 2020; Wu et al., 2023; J. Zhang et al., 2022a).

The highest PA was achieved using the MT model having

AI-based FDK traits as covariates. Unlike our findings, Wu

et al. (2023) did not observe any improvement in MT pre-

diction of DON using AI-based FDK and attributed it to the

misclassification of kernels by the neural network. In our

case, the AI-based platform used 3D imaging and NIR spec-

tral information from single kernels, which resulted in better

classification of diseased and healthy kernels, an accurate

estimate of FDK, and eventually a high correlation with the

DON.

Hyperspectral imaging combined with different ML/DL

models has proven to be a promising technology for

automated nondestructive phenotyping of various traits

(Cheshkova, 2022; Li et al., 2014). In our study, we integrated

hyperspectral imaging of kernels harvested from FHB nurs-

ery with MT GP models, as well as used it independently in

the phenomic prediction by directly predicting DON using DL

models. To the best of our knowledge, this is the first study to

evaluate the potential of close-range hyperspectral imaging in

MT GS for DON in wheat.

In the first scenario, we used MT GP to predict DON when

hyperspectral wavebands were used as covariates and no other

agronomic or FHB-related traits (as mentioned in the Meth-

ods section) were included in the MT GP model. As it is

tedious to use all wavebands in building an MT GP model, we

extracted only 10 wavebands from a total of 196 wavebands

based on correlation and representing the complete wave-

length range. We observed a significant increase in PA for

DON when MT GP models included wavebands as covariates;

however, the results suggested that only few wavebands from

certain wavelengths are useful in MT GP models rather than

including all the wavebands (Table S5). Different studies have

recommended different hyperspectral ranges for detection of

fungal infection or Fusarium in wheat. For instance, Berman

et al. (2007) recommend a 420–1000 nm region, whereas

Singh et al. (2007) recommend a 1000–2500 nm region. How-

ever, Cheshkova (2022) reviewed a set of spectral wavelength

ranges for plant disease detection and suggested that specific

ranges/spectra can be more useful for the detection of a vari-

ety of plant diseases in different crop species. In this regard,

our results also indicate the potential of including two selected

wavebands in MT GP models as covariates, which yielded a

comparable PA for DON compared to MT models built with

various agronomic or FHB traits. Nevertheless, further work

is needed to evaluate a wider hyperspectral range to provide

better insights about the most effective wavelength or range

for DON estimation and that would facilitate more efficient

prediction of DON when utilized in MT GP models.

In the second scenario, complete 196 wavebands from 984

images were directly used for phenomic prediction of DON

by leveraging DL based 1D-CNN model. We achieved a

comparable performance for predicting DON using 1D-CNN

in model training (R2 = 0.55) and independent validation

(R2 = 0.45) (Figure 7) to that of different MT GP models

evaluated in the current study (Figure 7). Moreover, the phe-

nomic prediction (R2 = 0.45) outperformed all the ST GP

models for DON evaluated in this study (Figure 7; Table S2),

which is in corroboration with recent reports from various

crop species where phenomic prediction performed better or

at par with GP (Adak et al., 2023; Jackson et al., 2023; Robert

et al., 2022; Winn et al., 2023). These findings suggest a

promising avenue for estimating DON based on hyperspectral

imaging, where breeders can quickly inform their selection

based on predicted DON. Though no similar study has been

reported in wheat, Su et al. (2021) investigated the viability of

employing hyperspectral imaging (382–1030 nm) to develop
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a fast and nondestructive methodology for testing DON in bar-

ley kernels. They used full wavelength with locally weighted

partial least squares regression to attain an R2 of 0.728 and

an RMSE of 3.802, suggesting room for improvement in

wheat. Also, further research based on different materials and

improved modeling is needed to lower the error in DON pre-

diction and exploit this strategy on a routine basis. In general,

our results suggest a potential application of hyperspectral

imaging-based phenomic prediction for DON and necessi-

tate further evaluation for fine-tuning the models by utilizing

larger datasets and more robust DL approaches.

5 CONCLUSION

FHB poses a severe threat to global wheat production and

food safety. However, phenotyping FHB traits such as FDK

and DON is laborious, time-consuming, and expensive, which

hinders breeding efforts to develop FHB-resistant cultivars.

This study shows that AI-assisted phenotyping for FDK could

improve the PA for FDK itself, and for DON when used as a

covariate in MT GP models, demonstrating its potential appli-

cation in wheat breeding. Further, we observed hyperspectral

imaging in conjugation with ML and DL models as a novel

avenue to estimate DON in FHB-infected wheat kernels with

prediction accuracy comparable to GP models, suggesting a

great potential for hyperspectral imaging-assisted phenomic

prediction in improving selection accuracy for these traits in

wheat breeding.
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