
ABSTRACT

DEWITT, NOAH DANIEL. Exploring and Predicting Genetic Causes of Yield Variation in
Winter Wheat. (Under the direction of Gina Brown-Guedira).

For most economically important plant species, yield is the primary focus of crop

improvement, as increasing it increases the amount of food that can be obtained from a

production system by human activity. Growers of soft red winter wheat (Triticum aestivum

L.) receive a return on investment in proportion to their per-acre yield, given that harvested

grain meets quality standards. Yield is also genetically complex, integrating information on

interactions between genotype and environment that occur over the course of a growing

season. Yield relates to the total accumulated and reallocated resources obtained by plants

over the course of their lives, and any factors that affect any aspect of plant growth and

development will also affect yield. These complex interactions between genetic variation

and environmental variation are difficult to untangle. By understanding important parts of

those interactions, breeders and geneticists may better develop cultivars that maximize

performance across a range of possible environmental conditions.

Much previous work has been done to understand and breed for yield. In CHAPTER 1, I

present some background on wheat, its history, and major genes that have been character-

ized that influence wheat phenology. I include discussion on various ways that geneticists

and breeders can predict future phenotypes, including methods that take advantage of

the characterization of major genes and methods that are blind to it, and discuss the yield

component framework that is a major focus of the research presented here.

In the following chapters, I present work that explores some parts of the genetic basis

of yield variation in our germplasm. In CHAPTER 2, I attempt to break down the genetic

character of traits that measure part of the variation in life histories, heading date and plant

height. I find that the genetic base of both traits is fairly simple in this population, and find

that models that explicitly account for major genes are more predictive than models that

weigh all sites equally. In CHAPTER 3, I collect per-spike yield and its component traits. I

try to extend the work of chapter 2 to understand how genetic variants for heading date and

plant height affect spike yield through the effects of those phenotypes on components of

yield, and to understand QTL that alter yield and not phenology. I develop models that rely



on an understanding of the causal structure of the data to first map QTL then understand

the mechanisms through which they alter spike yield. I find a set of yield component QTL,

some known and some novel, that have large effects on the yield component space as a

whole. QTL effects on total spike yield vary from environment to environment due to both

altered QTL effects on trait values, and altered relationships between traits.

In CHAPTERS 4 and 5, I focus in on a single yield component QTL, associated with the

presence of awns, as a "model QTL" to understand the full sequence of events through

which DNA sequence variation translates into environment-specific yield difference. I

identify the gene underlying B1 as a C2H2 transcriptional repressor, and find promoter

haplotypes associated with increased transcription of B1 early on in spike development

that suppresses awn elongation. I find that this has no effect on phenology, but increases

spike yield in some years and environments and decreases it in others. This pattern results

from differential increases in grain number relative to differential decreases in grain size

that sum to produce either positive or negative effects on spike yield. In CHAPTER 5, I use

historical data to associate a large number of per-environment yield differences associated

with B1 with climate variables, and suggest that the effect of B1 on yield may relate to

heat stress during grainfill, and suggest physiological explanations for those interactions.

The resulting map of intermediate effects, from sequence variation to yield variation, may

provide a model for characterizing the varietal GxE that results from the accumulation of

many such loci.
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1.1 A brief history of Wheat Domestication and Breeding

1.1.1 The wheat family

Common wheat (Triticum aestivum L. (2n=6x=BBAADD)) is an allohexaploid crop com-

posed of three sub-genomes, each inherited from a different progenitor species related

to extant wild diploid species (Fig. 1.1). Early domesticated "emmer" tetraploid wheat

(Triticum turgidum ssp. diccocum Koern. ex Schweinf. (2n=4x=BBAA)) was domesticated

from "wild emmer" tetraploid wheat (Triticum turgidum ssp. diccocoides (Schrank) Schübl).

Wild emmer wheat originated from a cross between the progenitor species Triticum urartu

Thumanian ex Gandilyan (2n=2x=AA), related to cultivated diploid wheat Triticum mono-

coccum L. (2n=2x=AA) and its progenitor Triticum boeoticum Boiss. (2n=2x=AA), and

a relative of the wild species Aegilops speltoides Tausch. (2n=2x=SS, contributing the B

subgenome) (Faris 2014). Diploid T. monoccocum has been cultivated as "einkorn" wheat

for approximately 11,000 years, and is still grown in some parts of Turkey and as a specialty

crop in the US and Western Europe (Charmet 2011). Emmer wheat is found in the wild

between the Palestinian region and the southern Caucuses, and was likely domesticated in

this area around 10,000 years ago. Cultivation of emmer wheat from heterogenous stands by

early neolithic communities led to selection for mutations that facilitated the harvest and

processing of wheat – BRITTLE RACHIS 1 (Br1) genes consisting of alleles in homeologous

genes on the short arms of the group three chromosomes prevents premature seed shat-

tering, allowing for harvest of whole heads (Watanabe and Ikebata 2000; Li and Gill 2006;

Nalam et al. 2006; Zhao et al. 2019). Today, modern tetraploid varieties of durum wheat

(Triticum turgidum ssp. durum L. (2n=4x=BBAA)) are grown, and globally used principally

in the production of pasta and semolina due to a hard kernel and weak gluten.

The D genome of common wheat was contributed by the wild grass Aegilops tauschii

Coss. (2n=2x=DD), found principally in the Caucuses and Central Asia. Because of the more

recent hybridization between Ae. tauschii and tetraploid wheat, occurring approximately

8,000 years ago, sequence polymorphism diversity is much lower in the D subgenome

relative to the A and B subgenomes (Charmet 2011; Faris 2014). Additional mutations in

major genes occurring after this hybridization generated domestication phenotypes that

facilitated use. The domestication gene Tg (TENACIOUS GLUME) on 2DS facilitates thresh-

ing of the grain (Sood et al. 2009). The transition from longer, spelt type heads (Triticum
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Figure 1.1: Overview of part of the wheat family. Adapted with modifications from Tadesse
et al. (2019). All Triticum and Aegilops species descend from a common, 7-chromosome
diploid itself descended from a 7-chromosome pair diploid that was also a progenitor of
rye (Secale cereale L.) and barley (Hordeum vulgare L.).

aestivum ssp. spelta L.) resulted from one or more mutations in the AP2 class gene Q on the

long arm of chromosome 5A, which generated varieties with heads that were more compact

and easier to thresh (Kato et al. 1998; Faris and Gill 2002; Simons et al. 2006). Spelt wheat

continues to be grown as a specialty crop for artisan bread flour. Also on the long arm of

chromosome 5A, but in a chromosomal region originating from a translocation between the

group 5 and group 4 chromosomes, a mutation in the Tipped 1 (B1) gene suppressed awn

elongation (B1 for "bearded 1", with bearded an alternate way to refer to awned varieties).

Selection on awns suppression may relate to ease of harvest and reduction of the portion of

chaff in harvested wheat, or potential yield benefits in northern climates. Awn suppression

was only fixed in some parts of the world, perhaps because awns protect from herbivory,

retain water which can increase susceptibility to pre-harvest sprouting, or because they

may improve yields in some climates (Cao et al. 2016; King and Richards 1984). Depending

on the market class, hexaploid common wheat is used in the production of bread, pastries,
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noodles, seitan, and most other wheat products, as well as in animal feed.

In modern breeding, the large secondary and tertiary genetic pools of wheat have

been invaluable for introgression of chromosome segments carrying disease resistance

genes. Cereal rye (Secale cereale L., 2n=2x=RR), also a member of the Triticeae tribe, has

contributed the entire short arm of its group one chromosome (1R) to common wheat’s

A and B subgenomes. These t1RS:1AL and t1RS:1BL translocation chromosomes have

both been associated with heightened yield and resistances to fungal diseases such as leaf

rust (Puccinia triticina; Lr26), stem rust (Puccinia graminis; Sr31), stripe rust (Puccinia

striiformis; Yr9) and powdery mildew (Blumeria graminis; Pm8), as well as the greenbug

aphid (Schizaphis graminum) (McKendry et al. 1996; Anderson et al. 2003; Anugrahwati

et al. 2008).

The secondary gene pools of diploid and tetraploid relatives T. monococcum and T.

turgidum ssp. diccocoides (einkorn and emmer wheat, respectively) have proven to be

valuable resources for discovery and introgression of novel resistance genes. The primary

utility of introgression from einkorn has been in the identification of stem rust genes,

principally Sr21, Sr22, and Sr35 (Kerber and Dyck 1973; McIntosh et al. 1984). Emmer

wheat has contributed stem rust genes, including Sr2 and Sr9 (McFadden 1930; Knott and

Anderson 1956), leaf rust genes inlcuding Lr53 and Lr64 (Marais et al. 2005b; Kolmer et al.

2010), and stripe rust genes including Yr15 and Yr36 (Gerechter-Amitai et al. 1989; Uauy

et al. 2005). Emmer wheats have also served as an important source of resistance to another

fungal pathogen, powdery mildew; Pm4a, Pm5, and Pm16 have been introgressed from T.

dicoccoides into common wheat (Dhaliwal et al. 1993).

The tetraploid relative Triticum timopheevii Zhuk. (2n=4x=AAGG) has also proved to be

a useful source of resistance genes for commercially important pathogens (Brown-Guedira

1996). Powdery mildew resistance genes Pm6, Pm27, and Pm37 derive from T. timopheevii

(Helmsjrgensen and Jensen 1973; Peusha et al. 2004; Perugini et al. 2008). A novel allele

of Pm1 conferring powdery mildew resistance, designated MlAG12, was also brought into

North Carolina germplasm by Maxwell et al. (2009). Stem rust genes Sr36 and Sr37 derived

from T. timopheevii have been mapped to chromosomes 2B and 4B, respectively (McIntosh

and Gyarfas 1971; Gyarfas 1978). Novel resistance to Fusarium head blight (FHB, caused by

Fusarium graminearum) has also been mapped to chromosomal segments derived from a

T. timopheevii parent (Malihipour et al. 2017).
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The D-genome donor Ae. tauschii has proven invaluable as a source of resistance genes

for common wheat pathogens. Examples of pathogens for which resistance genes have been

introgressed from Ae. tauschii include the UG99 rust variety (Olson et al. 2013), powdery

mildew (Murphy et al. 1998, 1999; Miranda et al. 2006, 2007), leaf rust (Leonova et al. 2007),

and Hessian fly (Ma et al. 1993). Introgression of resistance genes from the relative of B

genome donor Ae. speltoides has led to a number of resistance genes for rust, including

Lr28, Lr35, Lr36, Lr47, and Lr51 for leaf rust (Wells et al. 1973; Dvořák 1977; Friebe et al.

1996; Dubcovsky et al. 1998), Sr32, Sr39, and Sr47 for stem rust (Kerber and Dyck 1990;

Friebe et al. 1996; Faris et al. 2008), and Pm12 and Pm53 for powdery mildew (Miller et al.

1988; Petersen et al. 2015).

Other Aegilops species have contributed major resistance genes. The major leaf rust

gene Lr9 is a translocation originating from Aegilops umbellulata Zhuk. (2n=2x=UU,

Sears (1956)), while powdery mildew resistance gene Pm13 was derived from Aegilops

longissima Schweinf. Muschl. (2n=2x=Sl Sl , Ceoloni (1984)). Aegilops ventricosa Tausch

(2n=4x=Dv Dv Nv Nv ) donated a chromosomal segment to wheat chromosome 7D, ini-

tially identified for eyespot (Pseudocercosporella herpotrichoides) resistance, but which

has provided resistance to rust species in the form of Lr37, Yr17, and Sr38 (Jahier et al.

1989). Leaf rust gene Lr54 and stripe rust gene Yr37 originate from Aegilops kotschyi

Boiss. (2n=4x=Uk Uk Sk Sk , Marais et al. (2005a)). Work in this area continues, and fur-

ther resistance genes not yet heavily used in commercial cultivars have been introduced

from Aegilops sharonensis Eig (2n=2x=Ss h Ss h ), Aegilops searsii M. Feldman & M. Kislev

(2n-2x=Ss Ss ), Aegilops peregrina (Hack.) (2n=4x=Up Up Sp Sp ), Aegilops geniculata Roth

(2n=4x=Ug Ug Mg Mg ), Aegilops triuncialis L. (2n=4x=Ut Ut Ct Ct ), and Aegilops neglecta Req.

ex Bertol. (2n=6x=Un Un Xn Xn Nn Nn ) (Zhang et al. 2015). This work is likely to provide a

necessary base of resistances to future virulent strands of rust due to the tendency of rust

to rapidly evolve virulence to heavily utilized resistance genes.

1.1.2 Wheat breeding in the US

As a principally selfing species, wheat was traditionally cultivated in stands of genetically

heterogenous inbred lines. Occasional outcrossing allows for the generation of genetic di-

versity, but it can be assumed that most selection by pre-modern farmers involved altering

the relative proportion of inbred lines within a landrace (Bonjean and Angus 2001). Today,
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wheat is the major crop grown for human consumption in the United States and globally.

Wheat spread to North America with the occupation of the continent by European colo-

nizers beginning in the early 1600s, with soft wheats from Western and Northern Europe

constituting much of the early germplasm base (Brigham 1910). Variety development prior

to the 1900s was limited, but a number of early introductions became popular and were

cultivated widely. The red variety Red Lammas, grown in England as far back as the 17th

century, was brought to Virginia as Red May and cultivated for over two hundred years,

with 400,000 acres still planted in 1924 (Ball 1930). The red variety Mediterranean (also

called Lancaster) became dominant in the East after being imported into the country in

1819, because of its supposed resistance to Hessian Fly. Purplestraw was being grown prior

to the 1800s, and was still grown on 116,00 acres in 1924. By 1875 over 25 million acres of

wheat was being grown in the United States, with 49 million acres grown in 1901, greater

than the 2021 acreage of 47 million.

Development of the pure-line method in wheat on a larger scale occurred in Svalöf,

Sweden with the hiring of Hjalmar Nilsson by the Swedish Seed Association in 1889, who im-

plemented a "repeated pedigree" method inspired by the Vilmorin program in France, but

scientific breeding programs took longer to establish in the US (Åkerberg 1986). Single-head

selections from landraces, including some off-types that may have constituted outcross-

ing events, led to early North American pure-line varieties. The farmer David Fife made a

single-head selection of a hard winter wheat out of a stand of spring-planted wheat of Polish

provenance in Ontario that became known as Red Fife, and that contributes to the mod-

ern US hard wheat germplasm base, along with its direct descendant Marquis. Abraham

Fultz of Pennsylvania selected the soft, awnless variety Fultz from a field of Mediterranean

(synonymous with Lancaster) in Pennsylvania in 1862; Fultz was grown on nearly 5 million

acres by 1919 (Ball 1930).

Ultimately, the limits of cultivar improvement from single-head selections was reached.

Botanist Cyrus G. Pringle began developing varieties from crosses in Vermont starting in

the 1870s, and W.M. Hayes, based at the University of Minnesota experimental station,

pioneered a system by which commercial varieties were tested and grown to provide both

variety recommendations and pure seed to farmers in the state (Ball 1930). Beyond vari-

ety testing, Hayes developed a system for the development of pure lines from an initial

hybridization event using the "centagener" system in which selections were made from a

spaced plot of 100 individual progeny from a single plant. By the early 1900s farmer-breeders
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were developing varieties from crosses – S.M. Schindle crossed Fultz with Mediterranean

to produce Fulcaster, which enjoyed success as both a variety and a parent. Development

of varieties from crossing of inbred lines would be more rigorously taken up by land-grant

universities and by private companies such as the Coker Pedigreed Seed Company starting

in the early 1900s. The importance of these older cultivars is apparent even going into the

modern period; cultivar Knox, an important parent in cultivars released in the 1980s devel-

oped at Purdue in 1953, is primarily a product of crosses involving Fultz and Purplestraw

(Murphy et al. 1986). Fultz contributes heavily to Arthur, another cultivar produced by Pur-

due in 1968 that contributed heavily to the modern soft wheat germplasm base (Cox et al.

1986). In general, Mediterranean and its descendants have been important in constructing

the soft wheat germplasm base, though the SRW germplasm base of the East has been less

genetically homogeneous than wheat in other regions.

The development of steel roller mills in the 1870s led to the cultivation of hard wheats,

including those of Eastern European provenance, in the Great Plains for bread flour. Varia-

tion for kernel hardness is principally controlled by the Pin-D1 locus on 5DS (formerly the

Hardness Ha locus), consisting of two mutations (Pina-D1 and Pinb-D1) in adjacent friabilin

subunits (Morris 2002). These genes are missing altogether on the A and B subgenomes,

giving durum wheats a hard kernel, and the introduction of wild-type pin-d1 with the

addition of the D genome in hexaploid wheat confers a softer kernel texture through the

action of the frialibin protein, which transports proteins to granule membrane surfaces and

alters the distribution of starches within the endosperm. Different alleles for Pin-D1 involve

mutations in these two subunits (Pina-D1b and Pinb-D1b) which interfere with friabilin

function and re-confer hardness. The meal produced from the milling of harder wheats

are courser, and the altered distribution of starch granules within grain meal particles

are preferred for making flour for bread. Botanist Mark A. Carleton noticed the suitability

of hard Eastern European lines like Turkey Red (also referred to as Kharkof, Turkey, and

Crimean) brought by Mennonite immigrants into Kansas, and traveled to the Russian Em-

pire to collect, test, and distribute additional varieties (Carleton 1900). This germplasm

base, although not totally uniform due to differing selections from what were genetically

heterogenous landraces, became responsible for the entirety of wheat acreage in the Great

Plains. The influence of these early varieties can be seen in the pedigree of the variety

Thatcher, which dominated acreage in the Plains and Canada for years starting in the 1930s,

and was derived from a cross between Kanred (a selection from Turkey Red)/Marquis and

Marquis/Iumillo. Lines derived from Turkey Red became the major genetic contributor
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to the hard red winter germplasm base, and a significant contributor to the soft wheat

germplasm base (Murphy et al. 1986). The genetic homogeneity in wheats grown in the

Great Plains which resulted from the early success of a small number of related varieties

decreased dramatically over the middle part of the 20th century as a result of dedicated

breeding work, but with a core germplasm base still closely related to Turkey Red (Cox et al.

1986).

The spread of different wheat classes in different regions of the US led to the formaliza-

tion of the market class system by the United States Grain Standards Act of 1916 (Slaughter

et al. 1992). The distribution of regional milling and processing networks have reinforced

the geographic boundaries of market classes, so that different parts of the country specialize

in the production of different kinds of wheat. Winter wheat is divided into four classes

based off red versus white kernel color and hard versus soft kernel texture. Soft wheat is

principally grown east of the Great Plains, where acreage is dominated by soft red wheat, in

part because environmental conditions are less suited for bread wheat production. As Mark

Carleton wrote in 1920, "The annual wheat production [of the southern wheat district] is

comparatively small. In the greater portion of the district the combination of great rainfall

with mild temperature is not conducive to great success in wheat growing. The soil is also

generally not of the best for such purpose. Rust is always very bad, because of the constantly

damp, warm climate" (Carleton 1920). These soft wheats are used for other wheat products

such as cookies, cakes, and biscuits, as well as for animal feed. A minuscule amount of

hard wheat acreage is grown in the East for specialty products and to reduce shipping costs

for millers located in the Eastern US, and soft white wheats are grown on the Great Lakes

coast of Michigan and New York for cake and pastry flours. Hard red wheat for bread is

principally grown in the Great Plains, where a brief, dry grain fill period in the summer is

conducive to maintaining high quality. Specialty hard white and club wheat are grown in

the Pacific Northwest, principally for export to East Asia. In the Dakotas, Montana, and the

Canadian Prairie, where temperatures are often too cold for winter wheat to successfully

overwinter, spring hard red wheat for bread flour and durum wheat for pasta and semolina

are often grown.

A principal difference distinguishing older cultivars from modern ones is the reduced

height of most modern wheat. In most genotypes, stature is shortened by one of the two

principal "green revolution" dwarfing genes – Rht-B1b (Rht1) or Rht-D1b (Rht2). Mutations

in DELLA protein-coding genes on chromosomes 4B (Rht-B1b) and 4D (Rht-D1b) generate
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premature stop codons in the N-terminal regions of both genes (Peng et al. 1999). DELLA

proteins repress giberellic acid (GA) response, and Peng et al. (1999) suggest that muta-

tions in the N-terminal domain prevents proper degradation of DELLA proteins, leading

to constitutive repression of GA signaling, reduced cell elongation, and shortened stature.

Both of these variants were initially identified in Japan, where wheat farmers have preferred

to cultivate dwarf varieties since at least the sixteenth century (Borojevic and Borojevic

2005). Wheat breeder Gonjiro Inazuka, working at the Iwate Prefectural Agircultural Ex-

perimental Station in 1917, crossed a semi-dwarf Japanese landrace carrying these alleles

to the American variety Fultz, and in 1924 crossed the resultant progeny to Turkey Red to

develop a semi-dwarf cultivar Norin-10 with both dwarfing alleles (Inazuka 1971). These

alleles were introduced into the U.S. by Washington State breeder Orville Vogel, and were

soon adopted by breeders domestically and globally (Lumpkin 2015). Semidwarf varieties

are less likely to lodge, particularly with modern applications of nitrogen fertilizer, and

partition a larger portion of biomass to the head as opposed to the stalk. North Carolina

State cultivar Blueboy (Brevor/Norin-10//Anderson/Coker 55–9), Cornell cultivar Yorkstar

(Genesee*3/3/Yorkwin//Norin-10/Brevor), and Coker cultivar Coker 68-15 utilized these

alleles and became common as parents in Eastern soft wheat breeding programs after their

release in the 1960s (Guedira et al. 2010). Blueboy particularly became an important parent

for cultivars released in the 1980s (Murphy et al. 1986), with important varieties Saluda

(Virginia Tech) derived from Coker 68-15, and Hunter from Coker 68-15 and Blueboy. Knox

and Blueboy also contributed to notable Virginia Tech cultivar Massey (1981). Florida-302,

released from UF in 1984, became another important vector for Rht genes with Vogel and

Norin germplasm in its pedigree. By the 1980s, a majority of released cultivars in the Eastern

U.S. had at least one of the two Rht1 dwarfing alleles, and today nearly all varieties do.

One weakness of Rht1 cultivars is that they are GA-irresponsive, and reduced cell elon-

gation reduces not only stature but coleoptile length and grain size. These varieties have

smaller grain and need to be planted closer to the surface to emerge properly (Rebetzke and

Richards 2000). As a result, a shortened stature produced by a combination of other genes

may lead to higher yields. The dwarfing gene Rht8, the most frequently used outside of Rht1,

also has its origins in Japan. Italian breeder Nazareno Strampelli utilized the Japanese Rht8

semidwarf variety Akakomugi to develop popular Italian semidwarf varieties in the 1910s

(Worland et al. 1998; Borojevic and Borojevic 2005). Although a predictive marker for Rht8

is not available, it is known to be found in soft red winter wheat germplasm. Other genes

conferring a semidwarf stature that are GA-responsive have been identified, including
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a commonly mapped Rht gene in the centromeric region of chromosome 6A (Guedira,

unpublished results). With increased weed pressure from e.g. herbicide resistant Italian

Ryegrass, and advances in straw strength since the 1960s, breeding for non-Rht1 lines with

a somewhat taller stature may prove advantageous in the future.

In modern public-sector wheat breeding, programs cooperate on the federal and re-

gional levels to develop competitive varieties. The establishment of regional late-stage

nurseries by the USDA allows for the cooperative testing of both public and private lines

across a diverse set of potential target environments, and for direct comparisons in those

environments useful for making decision on variety release (see Boyles et al. (2019)). Email

and excel-based data sharing have facilitated coordination of late-stage trials between

collaborators across public and private institutions in the eastern US. Breeders in the South-

east United States collaborate through the SunGRAINs cooperative, allowing for sharing of

royalties, sharing of germplasm, and regional testing of lines at multiple stages that provides

advantages of a larger-scale program while allowing individual flexibility. Cooperative trials

have evolved into a common genomic selection program across the SunGRAINs programs

that has developed into a model for modernizing public-sector breeding. The success of the

wheat community in maintaining robust public breeding programs in the face of for-profit

encroachment results in part from this success in inter-program cooperation. Research

by land-grant institutions into the improvement of wheat genetics, agronomy, and their

interaction has driven large increases in U.S. wheat yield. From 1899 to 1904, growers in the

United States averaged 13.7 bu/acre (Brigham 1910), but the application of empirical plant

breeding promised to change that – in 1899 W.M. Hayes remarked of the new varieties he

was testing, including farmer selections "Hayne’s Blue Stem" and "Power’s Fife", that "23

bu/acre is substantially higher than yields observed in the state [of Minnesota]" (Hayes

1899). Average wheat yields reported across the United States are now in the range of 40-50

bu/acre, while yields under proper management are much higher (USDA Census, 2017).

Analyses of Uniform trial data collected over the past 15 years suggest that even today breed-

ers are improving yields at a rate of 0.56 bu/acre per year (unpublished results), suggesting

that growth in yields may continue and even increase in pace with implementation of new

technologies.
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1.2 Wheat phenology

1.2.1 Wheat growth and development

Common wheat is primarily cultivated under two major production systems. Wheat planted

in the spring matures and fills grain during the spring and summer. Lines may instead be

planted in the fall, where wheat germinates and develops into small plants, and lays mostly

dormant until winter dormancy release in the spring. This division is typically regional, and

relates to climate differences between regions, but also has effects on downstream end use

which can incentivize growth of different classes in the same geographic region. Typically,

fall-planted winter wheats are grown in temperate climates where sufficient chilling hours

are accumulated during the winter months to promote spring flowering, but temperatures

are not so low as to cause major injury to the crop. Spring production systems dominate

in both Northern production systems, especially in the Dakotas and the Canadian Prairie,

and in subtropical and equatorial regions of the world. Wheat varieties must be developed

for specific production systems and generally in specific regions, so that they respond to

environmental cues and mature at the appropriate times.

The transition of fall-planted wheats from dormancy to reproductive growth results

from the expression of the ortholog of the Flowering Time (FT) protein, VRN3 in wheat,

and its movement through the phloem from the leaves to the shoot apical meristem (SAM)

(Gauley and Boden 2019). When sufficient FT signal reaches the SAM, plants irreversibly

commit to reproductive growth and the SAM begins developing into the adult wheat spike.

Transcription of Vrn3 is initiated only through activation of a set of upstream genes which

integrate signals from night length (the photoperiod pathway), accumulated chilling hours

(the vernalization pathway), and the age of the plant in units of thermal time (the earliness

per-se pathway). In winter wheat, the SAM is maintained underground to protect the

gametic tissue from cold stress, but after dormancy release the elongating tiller carries the

growing spike upwards. The growing spike is visible as a widening of the leaf sheath just

below the apex of the tiller, before emerging at "heading" as the flag leaf folds back and the

peduncle (the uppermost, exposed internode) elongates. Anthesis typically occurs a few

days after heading, and mature plant height is reached shortly after with the termination of

the extension of the peduncle.

Maturity is an important secondary trait for wheat breeders, as non-optimal heading
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dates for a given environment may have negative yield effects. The ability of plants to

integrate information on and respond to their environments appropriately is necessary to

produce stable yield over many years and locations (Lewontin 1957; Allard and Bradshaw

1964). Genetic variability for these responses changes the developmental stage-specific

environments of plants through a back-and-forth process, as plants construct and are

constructed by their local micro-environments (Levins and Lewontin 1985). Later maturity

is generally associated with an increase in total spikelets per spike and grain number,

as a longer development time reduces the number of spikelet primordia aborted in the

developing SAM (Boden et al. 2015). Earlier maturity tends to reduce grain size by shortening

the grain fill period during which carbohydrates are allocated to developing grain. A too-

early heading date may also reduce yield by exposing developing spikes to below-freezing

temperatures that may reduce grain number by rendering florets infertile. Heading too late

risks reducing yield by exposing plants to heat or drought stress during grain fill, reducing

grain size by preventing the movement of carbohydrates into developing grain. Heat stress

during grain fill lowers grain size by increasing root and shoot temperatures, decreasing

sucrose levels, and deactivating the starch synthase enzyme that assimilates carbon, which

is particularly heat-sensitive in wheat (Bhullar and Jenner 1985; Hawker and Jenner 1993;

Guedira and Paulsen 2002). Understanding the genetic basis of variation for flowering time

within breeding populations, and selecting for appropriate heading dates, is therefore a

priority for wheat breeders and geneticists.

1.2.2 Variation in major genes alter wheat phenology

The division of production systems into winter and spring planting is generally, but not

always, associated with allelic variation at the vernalization genes. The major heading date

genes of wheat involve allelic series at the A, B, and D homeologues of the major integrator

of vernalization signal, Vernalization1 (Vrn-1) (Yan et al. 2004; Fu et al. 2005; Li et al. 2013),

and the major integrator of photoperiod signal, Photopeiord1 (Ppd1) (Beales et al. 2007;

Nishida et al. 2013; Guedira et al. 2016), both of which act upstream of Vrn3 in the wheat

flowering time pathway. A series of large-effect alleles in important genes in the wheat

flowering time pathway condition major additive genetic variation for heading date and

have facilitated the adaptation of wheat to different growing conditions in different parts of

the world. Typically, fall-planted wheats have the wild-type, sensitive vernalization alleles

also found in wild relatives, but facultative winter wheats with spring alleles at vernalization
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loci can overwinter using signal from night length to determine dormancy release in the

spring.

In Drosophila, a large number of genes with obvious physical effects and a small number

of chromosomes allowed genetic maps to be constructed early on (Sturtevant 1913). With

relatively few of these physical markers and a much larger number of chromosomes, map-

ping studies in wheat first became possible with the advent of cytology and the construction

of detailed libraries of monosomic and nullisomic lines (Sears 1944, 1953). The direct ob-

servation of nullisomics may permit the association between a gene and a chromosome

by observing qualitative changes in the nullisomic lines lacking a whole chromosome or

chromosome arm. Additionally, F2 populations can be generated from a wild type and

monosomics for different chromosomes to study altered ratios of inheritance for a char-

acter, or varieties can be compared through a more detailed transfer of a chromosome

from a different variety into a monosomic for that chromosome, creating substitution

lines differing for that whole chromosome. Chromosome 5A (referred to as chromosome

IX by Sears and as chromosome "C" in prior work) was the first chromosome for which

genetic maps were constructed, in part due to the co-location of major dominant alleles

on the long arm. Winge (1924) used nullisomics to co-locate the "grannenhemungsfaktor"

(awn-inhibition factor, B1) and the "ahrenverkurzender faktor" (ear-shortening factor, Q)

on chromosome "C" (5A).

Major genes controlling the quantitative trait of heading date have sufficiently large

effect to be mapped within this paradigm. The spring allele Vrn-A1 was first identified by

Åkerman and J. MacKey (1949) as Sk . Aneuploids and nullisomics were used to place a

major gene controlling spring type on chromosome IX (5A) alongside B1 and Q (Unrau 1950;

Sears 1954). By 1968 Sk had been identified by Mackay as being Vrn-A1 according to Pugsley

(1971), who was able to assign genotypes at Vrn-A1 to a number of Australian cultivars.

Using populations derived from 5A substitution lines, Law et al. (1976) were able to map

Vrn-A1 to at least 50 cM distal to the centromere on the long arm. Using chromosome

substitution lines, Snape et al. (1985) were able to map Vrn1, B1, and Q together on the

long arm of 5A, though they were ordered incorrectly. With the help of restriction fragment

length polymorphism (RFLP) markers, Kato et al. (1998) ordered the major genes correctly;

from proximal to distal, Vrn1, Q, then B1.

As variation in the response to chilling hour accumulation is in large part generated by

variation in the Vrn1 genes, variation in plant response to day length is primarily generated
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by variation in the Photoperiod1 (Ppd1) genes on all three homeologues (Beales et al. 2007;

Nishida et al. 2013; Guedira et al. 2016). Law et al. (1978) state that two genes controlling

photoperiod response were identified by J.R. Welsh and presented in 1973, mapped to 2D

and 2B as Ppd1 and Ppd2 respectively. The earliness allele with the largest effect is associated

with Ppd1, now known as Ppd-D1a, which was also brought into European and American

germplasm from Akakomugi and is typically in close linkage with the dwarfing allele of

Rht8. A smaller-effect mutation affecting Ppd1 on chromosome 2A known as Ppd3 (now

known as Ppd-A1) which segregates in US germplasm may have its origins in germplasm

from India (Law and Worland 1997).

Advances in sequencing and molecular biology allowed for the cloning of some of these

major genes. The gene underlying Vrn1 was identified by Yan et al. (2003) as a MADS-box

AP1 gene orthologous to meristem identity genes AP1, CAL, and FUL in Arabadopsis. Alleles

generating a spring growth habit through constitutive up-regulation were identified at

the Vernalization1 (Vrn1) loci on the three group 5 homeologues (Yan et al. 2004; Fu et al.

2005; Li et al. 2013), while additional alleles in vernalization-sensitive (winter) lines reduce

the degree of vernalization sensitivity and promote earlier flowering, especially in warmer

climates (Fu et al. 2005; Díaz et al. 2012; Guedira et al. 2014, 2016; Kippes et al. 2018). The

cloning of a CCT-domain containing gene (CONSTANS (CO), CO-LIKE, and TIMING OF

CAB1) as underlying Ppd-H1 in Barley by Turner et al. (2005), and the colinearity of the

region on 2H with the mapped Ppd-D1 locus on the group 2 chromosomes in wheat, lead

to the identification of orthologous CCT proteins as underlying Ppd-1 on all three wheat

homoeologues (Beales et al. 2007; Wilhelm et al. 2009; Díaz et al. 2012). Sequence variation

at or near these three genes leads to constitutive expression of Ppd1 and the photoperiod-

insensitive, earlier flowering habit associated with certain alleles of Ppd-A1, Ppd-B1, and

Ppd-D1 (Beales et al. 2007; Nishida et al. 2013; Guedira et al. 2016).

A common approach to attempt to identify genes underlying quantitative trait variation

begins with a marker-trait association and a position, moves to identifying the associated

gene, and then works to understand the mechanisms underlying the translation of se-

quence variation to trait variation through the action of that gene. Here, characterization

of these major genes started from an observation of varieties with varying responses to

environmental cues and moved forward to characterization of segregating genes, then

positioning on chromosomes and identification of the associated gene. At the same time,

these genes are commonly detected in marker-trait association studies. Prediction models
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relying on assumptions of large numbers of small-effect alleles with additive effects do

not capture the effects on yield of these major genes. As a start, fitting markers for these

genes as fixed effects may improve genomic-selection models for related traits (Sarinelli

et al. 2019). As these major genes alter plant response to environmental cues, explicitly

modeling interactions between major alleles at these loci and environmental variables may

improve future predictive models, and help us understand the contribution of variation in

growth habit to yield variation.

1.3 Prediction of phenotypes from genotypes

Wheat geneticists have been able to associate qualitative differences in phenotypes with

discrete loci. But typically, the traits of interest for wheat breeders are quantitative, and

under the control of many thousands of causal variants. For the improvement of these

traits, prediction of phenotypes can occur with or without the use of genetic information,

or even information on the physical locations of variants.

1.3.1 Covariance between relatives and prediction

Individuals with a shared ancestry often have more similar phenotypes than two individuals

randomly sampled from a given population (Fisher 1918; Wright 1921). A major part of

the covariance between relatives results from those two individuals being more likely to

share DNA sequence at any given locus than two random individuals, although relatives

may also have more similar environments (σ2
P (x , y ) =σ2

G (x , y ) +σ2
E (x , y ) +2σG ,E (x , y )).

Breeders and geneticists have used this insight to develop a series of tools that allow for the

prediction of phenotype for individuals with little or no observed phenotype – covariance

between relatives allows for the prediction of individuals based on the previous observation

of identical or related genotypes. In most plants, the ability to generate clones, inbred lines,

or hybrids between inbred lines allows for the replication of the same genotype in multiple

environments. Properly designed replicated experiments permit the partitioning of environ-

mental convariances from genetic covariances, and can eliminate the covariance between

genotypes and environments. Breeders rely on the observation of identical genotypes to

predict the performance of the same genotype in future environments, assuming that some
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population of sampled environments is representative of the target environments. At the

same time, estimation of additive genetic variation (σ2
A), dominance genetic variation (σ2

D ),

epistatic genetic variation (σ2
I ) and environmental variation (σ2

E ) gives breeders a sense

of how predictive those values are in a separate set of environments. Depending on the

genetic structure of the population, predictive ability as a function of the ratios of estimated

variance components analagous to r 2 may take the form of broad-sense heritability for

clones (broadly, H = σ2
A+σ

2
D+σ

2
I

σ2
A+σ

2
D+σ

2
I+σ

2
E

) or inbreds (H = σ2
A+σ

2
I

σ2
A+σ

2
I+σ

2
E

). The relative ratios of genetic

variance components in a given population of a given generation also determines the ability

to predict future phenotypes; in selfing populations, the ability of a phenotype to predict its

progeny is lower in earlier generations whereσ2
D is proportionally higher thanσ2

A relative to

later generations (Falconer and MacKay 1995). Comstock and Robinson (1952) developed a

series of experimental designs at NC State, termed NC Designs I, II, and III, that allowed

for the estimation of additive and dominance variances through variance components

associated with different levels of relationships among the individuals in those mating

designs.

In other commercially important species, like cattle (Bos taurus L.) or pine (Pinus

taeda L.), replication of identical genotypes is impossible or cost-prohibitive. In this case,

prediction of a genotype’s value for some trait is based on the observations of relatives. In

the simplest case, many progeny produced from the mating of one individual to others can

be phenotyped. All of these half-sib individuals share a common kinship with the common

parent, allowing for an estimation of the genetic merit of the common individual, even if

that individual is not observed. The predictive ability in these cases relate to the inherited

additive effects of alleles and the narrow-sense heritability, h 2 = σ2
A

σ2
A+σ

2
D+σ

2
I+σ

2
E

. In crops such

as maize (Zea mays L.) where hybrids dominate commercial production, replicated testing

of offspring from crosses between different pairings of a set of inbred lines is used to predict

both the overall genetic merit of lines as a hybrid parent (general combining ability; GCA)

and the genetic merit in combination with specific individuals (specific combining ability;

SCA) (Lynch and Walsh 1998).

Predictions for all individuals in a given population can be obtained at once using a

linear model (y=Xb+e, for a vector of phenotypes y, vector of genotype effects b, vector

of residuals e, and design matrix relating phenotypes to genotypes X, with number of rows

equal to the length of y and number of columns equal to the length of b) (Isik et al. 2017).

In the simplest case, least squares estimates calculate a mean for each genotype across all
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replications by solving b̂= (X′X)−1X′y, where X′y sums values across genotypes and (X′X)−1

weights each sum by the number of observations, so that the least squares estimate of any

individuals equals the sum of observations over the number of individuals. In a mixed

linear model, genotype values may be fit as a random effect where estimates are shrunk

closer to zero inversely proportional to the information available to make that estimate.

Here, y= Zu+e, where u is a vector of coefficients for random effects and Z is a design

matrix relating phenotypes to random effects. In the simple case where all phenotypes are

centered and no fixed effects are fit, solving for genotype values takes the form y= Zu+e

and can be solved similarly to before as:

û= (Z′Z+λI)−1Z′(y− ȳ )

This formulation is equivalent to the least squares estimator except that prior to taking

the inverse of the diagonal matrix of number of observations of each genotypes to derive the

weights (Z′Z), a single scalar (λ, the ridge factor) is added to each element of the diagonal,

which has the effect of disproportionally placing more weight on genotypes for which more

observations were recorded (e.g., comparing two genotypes with equal phenotypes but

with one versus two reps, n ∗ 1
1 = 2n ∗ 1

2 , but n ∗ ( 11 +λ)< 2n ∗ ( 12 +λ) for λ> 0). The estimates

obtained from this rely on λ, which is computed as a form of inverted heritability asσ2
e /σ

2
u ,

whereσ2
u is the variance associated with the random effects and may be constructed from

different types of genetic variance components depending on the genetics of the system of

interest. A decrease in heritability, representing an increase inσ2
e relative toσ2

u , increases

λ, and further shrinks the estimates of genotypes for which less information is available

relative to those for which more information is available.

When phenotypes are not centered and additional fixed effects are included in the

model, coefficients are estimated for both fixed effects as b and random effects u in the

form y=Xb+Zu+e (Bernardo 2010). When the number of random effects becomes large,

the inversion of large matrices may become computationally difficult. Henderson (1976)

presented a more computationally efficient method for jointly obtaining values for fixed

effects, non-genetic random effects, and random effects for genotypes. A simpler and more

generalized form that combines random effects and jointly solves for b̂ and û can be written

as:
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XT R−1X XT R−1Z

ZT R−1X ZT R−1Z+G−1

��

b̂

û

�

=

�

XT R−1y

ZT R−1y

�

For fixed effect design matrix X, random effect design matrix Z, and covariance matrices

for random effects G and for residual effects R. In the simple case of identical and indepen-

dent variances of residual effects, R = I, and since the inverse of the diagonal matrix I−1 = I,

Henderson’s equations simplify nicely to:

�

XT X XT Z

ZT X ZT Z+λI

��

b̂

û

�

=

�

XT y

ZT y

�

If variance componentsσ2
e andσ2

u used to calculate λ are known, b̂ and û are BLUEs

(best linear unbiased estimates) and BLUPs (best linear unbiased predictions) respectively

(Henderson 1975). For real-world data, where variances are typically estimated iteratively

at the same time as parameters, BLUPs and BLUEs are really estimated BLUPs and BLUEs

– unbiased but not necessarily optimal (Kackar and Harville 1981). Standard errors for n

individual BLUPs can be computed from the n diagonal elements of the bottom-right

sub-matrix of the inverse of the whole left-hand side matrix, and can be used to calcu-

late reliability (r̂ 2 = 1− (St d .E r r o r )2

σ̂2
u

), a direct measure of the predictive ability of the BLUP

analogous to the heritability (Isik et al. 2017).

If pedigree information is available, this same method can be used to improve the

accuracy of estimates of a genotype by incorporating information on the phenotypes

of relatives in proportion to their kinship to said genotype. When a kinship matrix A is

constructed such that each individual element Ai , j equals twice the coefficient of coancestry

between i and j , covariances between individuals are modeled as their kinship coefficient

times the additive genetic variance (G = σ2
AA) (Lynch and Walsh 1998). A linear mixed

model equation incorporating pedigree information is solved as above except that instead

of assuming zero covariance between individuals by using the identity matrix I, the inverted

kinship matrix A−1 is used. Solutions for genotype effects then account for expectations of

phenotypic covariances between individuals in proportion to their coefficient of coancestry:

û= (Z′Z+λA−1)−1Z′(y− ȳ )
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This method is equivalent to the computation of selection indices for each individual

(Robinson 1991), except that it occurs simultaneously, so that an individual’s phenotype is

the sum of the phenotypes of its relatives, weighted by its relationships to those relatives and

itself and the amount of information available for its relatives and itself. If no information

is available on an individual, this method produces a prediction of that individual’s value

based solely on the phenotypes collected on its relatives.

Considering one form of the breeder’s equation R = i rσ2
A

L (where yearly response to

selection R equals the product of selection intensity i , accuracy of selection r , and additive

variationσ2
A over generation interval L), incorporation of information on relatives when

predicting lines may improve total response to selection. For starters, incorporation of

relatives’ phenotypes may increase the accuracy of selection r . Perhaps more importantly,

prediction of unobserved individuals or early-stage individuals with little phenotypic data

available may be useful in reducing breeding cycle time L , allowing for recycling of individ-

uals likely to be high-yielding as parents prior to evaluation, or prior to the point where

they would normally be recycled as parents. A common problem in pedigree-based wheat

breeding programs is the availability of different phenotypes with different difficulties of

evaluation at different stages in the program; if some of these phenotypes are correlated, a

multivariate model may provide greater prediction of individuals with missing information

for one phenotype based both on relatives’ phenotypes and phenotypes for correlated traits

(as a practical example, prediction of more evaluation-intensive disease traits from less

intensive disease traits in Larkin et al. (2021) and Gaire et al. (2022)).

1.3.2 Use of markers to track chromosomal segments

An alternate approach to predicting phenotypes of unobserved individuals is to use in-

formation on sequence variation as measured by molecular markers. This approach is

particularly useful if a small number of large-effect genes cause a substantial amount of

the overall trait variation within a population of interest. Even before the development

of molecular markers, geneticists sought to identify major genes affecting quantitative

traits: indicators of the segregation of alleles with large effects include increases in heri-

tability after selection (if the allele is initially at a low frequency) (Latter 1965), preservation

of genetic variance with repeated cycles of crossing individuals from the two tails of the

phenotypic distribution (Wright 1952), and various tests of departure from normality or
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differing variances of sibling sets (Hammond and James 1970; Fain 1978). When a ma-

jor gene for a quantitative trait is tightly linked to a gene with some qualitative effect on

appearance, that physical marker can serve as a marker for the QTL in lieu of molecular

information (as originally proposed by, Sax 1923). In the case of wheat, some major genes

identified in this manner may be tracked without molecular information, for example by

not vernalizing populations segregating for an allele at a Vrn-1 locus. For most practical

applications, however, molecular markers in linkage with the causal variant or that test

the causal variant directly are necessary to exploit information on these major QTL for

marker-assisted selection (MAS).

Initial studies on molecular markers used isozymes, which allow for the measuring of

sequence variation within exons via the differential amino acid sequence of transcribed

proteins. The measurement of changes in frequency of isozyme alleles over the course of

selection for a trait may allow for an association of changing allele frequency with a change

in phenotype, implying that variants in the chromosomal chunk associated with the isozyme

variation had a causal effect on the trait value (Stuber and Moll 1972). A more powerful tool

relies on the limited total number of cross-over events that occur per generation on a single

chromosome, which generates a correlation between markers as some function of their

physical proximity on the chromosome. Working at NC State, Lewontin and Kojima (1960)

termed this association "linkage disequilbrium", and defined it as deviation from linkage

equilibrium D , which is decays over n generations or random mating as a function of

recombination frequency c as Dn = (1− c )n D0 for any two loci. The linkage of isozymes and

nearby causal polymorphisms allows for direct association of a chromosomal segment with

a difference in mean phenotype within a population of full-sib F2 (e.g. Edwards et al. 1987) or

inbred lines (e.g. Stuber et al. 1987), and the tracking of such a quantitative trait locus (QTL)

and its placement onto a genetic map. Within a population of full-sib inbreds produced

via single seed descent or double haploid induction, for a given locus there should be two

alleles in approximately equal frequencies, and there should be no correlation between

the allele at a locus and alleles at loci on other chromosomes. The size of the difference in

mean phenotypes between the two classes of genotypes at a single locus can then be tested

to associate sequence variation near that locus with a causal change in phenotype. In the

case of testing markers, because of recombination between a tested marker M and QTL

Q, the allele effect will be underestimated in proportion to the genetic distance between

M and Q (for the true allele effect a of a QTL Q estimated via marker M linked to Q with

recombination fraction cM ,Q , âQQ =
µM M−µmm

2 = aQQ (1− 2cM ,Q ), so that âQQ < aQQ when
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cM ,Q > 0) (Edwards et al. 1987; Lynch and Walsh 1998). In double haploid populations

c is the per-generation recombination frequency, while in inbred populations its value

approaches twice the genetic distance with continued inbreeding.

A slightly different approach with improved power uses the conditional expectation of

the QTL genotype given observed trait distributions (Lander and Botstein 1989). The maxi-

mum likelihood approach (somewhat tautologically) identifies the most likely parameters

by identifying the maximum value of the likelihood function ℓ(θ | x), for a vector of observed

values x and unknown parameters θ which generate some probability distribution. In prac-

tice, it is generally easier to work at the scale of the log of the likelihood L (θ | x) = l n [ℓ(θ | x)].
In the case of QTL mapping in an inbred or double haploid population, the likelihood

function for an individual trait value z at a locus linked to marker M at distance c is the

sum of the likelihoods for the recombinant and non-recombinant cases:

ℓ(z |M M ) = (1− c )2φ(z ,µQQ ,σ2) + c 2φ(z ,µq q ,σ2)

ℓ(z |mm ) = c 2φ(z ,µQQ ,σ2) + (1− c )2φ(z ,µq q ,σ2)

Where likelihood for the total set of n F∞ individuals is the product of each individual’s

likelihood given their individual trait values and marker genotypes ℓ(z) =
∏n

i=1 ℓ(zi |Mi ). The

likelihood of odds (LOD) scores used to generate graphs of QTL likelihood over chromosome

intervals is generated from the log 10 ratio (due to a history of use in human genetics,

Morton (1955)) of the QTL likelihood at locus l versus the likelihood of a unimodal normal

distribution given vector of trait values z (ℓH 0(z)), for LO Dl = l o g10[
ma x ℓ(z,l )
ℓH 0(z)

].

Maximum likelihood methods are computationally intensive – in simple cases the max-

imum value of the function can be solved via the derivative of the likelihood function,

but generally iterative methods such as restricted maximum likelihood are used – and

regression-based approaches such as the Haley-Knott approximation return nearly equiva-

lent results, much faster (Haley and Knott 1992). Relying on the equivalency of maximum

likelihood and regression when assumptions about the normality and independence of

errors are satisfied, the LOD scores for markers can be computed as the ratio of residual

variances associated with the model distinguishing the two classes at a locus with a null

model (LO D = n
2 l o g10(

RSS0
RSS1
), where n equals the number of genotypes) (Broman et al. 2003).

In the null case, the residual sum of squares equals the maximum likelihood estimator
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of phenotypic variance, RSS0 = n ∗σ2 =Σi (yi − y )2. Under the alternative hypothesis, fit

with the model yi ∼ g i + ϵi for QTL genotype g in individual i , the residual sum of squares

becomes the squared deviations of each individual phenotype from the mean of its geno-

type class RSS1 =Σi (yi − µ̂g i )2. In the case of loci in linkage with the QTL, LOD scores so

computed are extremely similar to the true likelihood ratio (Haley and Knott 1992). In

practice, genotype probabilities can be calculated for an array of loci between flanking

markers based on the genotypes of their flanking markers and the recombination fraction

separating them prior to QTL mapping, and LOD scores calculated for each simulated locus

in the array to compute likelihood curves (Broman et al. 2003).

To determine significance thresholds, the same model is run across permutations where

trait values are randomly re-assigned to new genotypes, observing how often a certain LOD

value is observed given a population of runs where there is no causal relationship between

genotype and phenotypes (Churchill and Doerge 1994). QTL models that repeat the tests

incorporating information on already mapped QTL may improve power to map additional

QTL.

Early QTL mapping studies relied on isozymes, which were difficult to assay and limited

in number. The discovery of RFLP markers allowed for the construction of chromosome-

scale linkage maps (Botstein et al. 1980). SSRs (simple sequence repeats) further facilitated

linkage map construction, relying on the fact that repeating sections or DNA are more

prone to "slippage" of the replication machinery, generating size polymorphisms at these

loci (Levinson and Gutman 1987). Assaying of SSRs may be particularly powerful for studies

of population structure, as there are generally more than two alleles at a given locus. The

development of next generation sequencing technology, particularly arrays ("SNP chips")

and reduced-representation sequencing, have made it much more practical to perform

QTL mapping studies by greatly increasing the number of variants assayed for a given

amount of money and labor. SNP arrays pair DNA probes that capture DNA segments

known to harbor SNPs in a population of interest, which are then sequenced using next

generation sequencing; the development of the 9K SNP chip in wheat greatly facilitated

mapping studies by allowing for the assaying of many SNPs at a low cost (Cavanagh et al.

2013). Genotyping-by-sequencing (GBS) relies on repeatably fragmenting the genome into

fixed segments using pairs of restriction enzymes, size-selecting fragments within a given

size range, and then sequencing and calling SNPs within those segments (Poland et al.

2012). SNP chips may be preferred in some instances as they deliver less missing data per
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SNP, but in general GBS is preferred, as it can typically be performed at a lower cost per

sample and is able to identify novel SNPs within a given population. Use of both of these

technologies are facilitated by the Wheat reference genome (Appels et al. 2018), which

allows for the placement of SNPs onto a physical map alongside gene models and other

features of interest.

The principal limitations of QTL mapping for forward prediction are the false positives

and over-estimation of QTL effect sizes produced via the Beavis effect as a result of variation

in effect estimates and the setting of a hard cutoff for QTL detection (see Beavis 1998;

Schön et al. 2004). Another major limitation of QTL mapping for forward prediction is that

an association is related to a chromosome interval, and not the causal SNP or structural

variant. Two approaches are used to address this: one can develop flanking markers for

a polymorphism that are easy to assay, develop a marker associated with the haplotype

within which the causal variant resides, or identify and develop a marker for the causal

variant directly. Fine-mapping and positional cloning are the principal methods used to

identify causal variants underlying QTL, and involve the generation of partially inbred

lines heterozygous for different intervals within the broader QTL interval (for a detailed

description of modern methodology, see Kuzay et al. 2019). Testing of near-isogenic lines

derived from plants heterozygous for different regions allows for the association of a sub-

segment with the trait of interest, to determine if the QTL is found within that interval. Once

the region is narrowed down to a smaller interval, a new set of recombination events may

be generated by selfing to further narrow down the region. Restriction of the QTL region

to an area containing only a handful of genes allows for direct investigation of possible

causal polymorphisms and their validation through transformation of new lines with the

candidate variant.

In a genome-wide association study (GWAS),a diverse population is tested in the same

manner as a marker-regression QTL analysis. The idea of studying associations between

markers and quantitative traits in diverse populations is not new – for example, Hickman

(1889) attempted to associate the B1 locus for awn status with yield in wheat variety trials –

but the development of marker assays covering the whole genome suggested the possibility

that the overall additive genetic bases of a trait could be fully characterized. While many

studies have identified useful major-effect genes, the goal of characterizing the genetic

bases of important traits has generally not been realized (McClellan and King 2010). In

part, the divergence of allele frequencies from 0.5 and LD between markers not on the
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same chromosome resulting from population structure may reduce power or generate

confounding results (Korte and Farlow 2013). Markers with large effects at low frequency,

perhaps mutants under strong negative selection, may contribute an outsized effect to total

variance due to the squaring of the effect size, but may be difficult to detect due to their low

frequency(Gibson 2012). Their detection is further complicated by the need to filter out

SNP markers with low minor allele frequency to produce clean data, as sequencing errors

may produce false SNPs at low frequencies. In systems where replicated common garden

experiments are not possible, covariance between genotype and environment may make

causal inference impossible, especially in humans where phenotypic covariance between

parents and offspring is produced by social structures (Turkheimer 2012). In the presence of

population structure, markers whose frequency varies between sub-populations may have

a significant effect if those sub-populations differ on average for the considered phenotype.

In the cases where obvious sub-populations are apparent, estimating coefficients for the

first few eigenvectors of the covariance matrix between genotypes estimated from marker

or pedigree data as covariates may correct for population structure. The full covariance

matrix may also be used in a mixed-model framework as noted previously, or the two may

fit together (see Lipka et al. (2012)). Despite corrections for population structure, the ability

to make causal inference or predict out-of-sample from marker-trait associations is limited,

and GWAS results primarily have utility as a precursor to separate validation experiments.

These two approaches may be complementary; GWAS studies can begin to narrow down

the interval of a QTL, or diverse haplotypes associated with one allele may be used to rule

out possible causal polymorphisms within separate fine-mapping populations.

Conversion of a linked or causal polymorphism into an assay (for example, with kom-

petitive allele-specific PCR, He et al. (2014)), allows for the prediction of unobserved lines

and marker-assisted selection. This may have utility in crops like wheat where many alleles

have large effects on some phenotypes. This is particularly useful for disease resistance,

phenology, and quality traits. For biotrophic pathogens such as rust, identification of major

resistance genes that induce a qualitative hypersensitive response allows for the prediction

of resistance from markers given an understanding of the composition of rust types in the

target population of environments. For necrotrophic pathogens such as Fusarium head

blight where typical classes of qualitative resistance genes are not effective, genes underly-

ing QTL (such as Fhb1) may still be identified and found useful in enriching germplasm

for resistance. Assays underlying variation in genes that control time to flowering, and for

major height genes Rht-B1 and Rht-D1, allow for prediction of approximate phenotypes
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without field evaluations. Markers for major polymorphisms found within the glutenin

genes allows for prediction of general protein quality (Payne and Lawrence 1983), and assay-

ing a polymorphism in Pin-D1 distinguishes hard and soft wheats. Markers for MYB genes

on all three chromosomes distinguish varieties into red and white market classes (Himi

et al. 2011). For traits like yield that are controlled by a huge number of underlying causal

polymorphisms, genotyping of one or a small set of markers is not useful in predicting

phenotypes, and effects for most markers linked to causal polymorphisms are too small to

be estimated well.

1.3.3 Genomic prediction as a unifying framework

Both approaches to prediction of unobserved individuals converge in the mixed model

framework for prediction of phenotypes using large numbers of genome-wide markers

(referred to by some as the p > n case, where number of predictors p is greater than the

number of individuals n). In this case, the phenotype of unobserved individuals may be

predicted given phenotypic data collected on related individuals and data on hundreds to

thousands of genome-wide, generally neutral markers collected on both sets of individuals

(Whittaker et al. 2000; Meuwissen et al. 2001). From the marker framework, a penalized

estimate of marker effects may be computed by marching down each chromosome, and

taking the difference in phenotype between the two classes distinguished by each marker

with a shrinkage factor λ:

û= (M′M+λI)−1M′(y− ȳ )

This formula is equivalent to that given for estimates of breeding values assuming

zero covariance between relatives given in section 1.3.1, except that the numeric marker

matrix M is used instead of the design matrix for individuals Z. An additional feature of the

inclusion of the λ penalty is that it allows estimations for all markers without generating

singularities, even when the total number of markers exceeds the number of individuals.

The values of unobserved individuals are computed from the multiplication of the vector of

marker effects by the matrix of marker values for each individual (Ŷi = µ̂+
n
∑

j=1
xi j û j , where

xi j is the allele dosage of marker j in individual i , and û j is the estimated coefficient of

the marker effect), to calculate a sum of effects given the markers of each individual. This
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method is referred to as ridge regression, as the multiplication of each estimate by the

"ridge" (λ) penalty allows for fitting of many more marker effects than there are individuals.

In contrast, phenotypes of unobserved lines may be predicted using the same set of

markers by using them to estimate relatedness between lines, and using the same model

as in prediction of phenotypes using pedigree information (GBLUP). The mixed model

equations are solved equivalently, except that we replace the inverse of the kinship ma-

trix containing estimates derived from pedigree information A−1 with a matrix containing

realized relationships estimated from marker data G−1 (Bernardo 1994). In the case of a

biparental population where allele frequencies in the total population are 0.5, the relation-

ships can be calculated by multiplying the matrices and taking the proportion of markers

shared between two genotypes (G = MM′

n for n markers in (-1,0,1) coded marker matrix

M). In a diverse population where allele frequency varies, VanRaden (2008) developed a

modified method that lends more weight to rarer alleles in the estimation of kinship. First,

a vector p of allele frequencies for each the marker matrix is calculated, and used to adjust

M as Z=M - P, where P is a matrix consisting of the vector p repeated rowwise to match the

dimensions of M. Realized relationships are then calculated using Z similarly as before as:

G=
ZZ′

2Σp (1−p )

With values scaled by the twice the sum of the frequency of the major and minor alleles

instead of the overall number of markers. While the prediction of individuals from observed

relatives versus the summation of marker effects are conceptually different, the GBLUP

and rr-BLUP methods use the same data as inputs into the same types of models to get

equivalent results. They differ only in whether effects for the "long" side of the marker-

genotype matrix are estimated by û and then summed across genotypes, or if û computes

estimates for the genotypes directly by multiplying the matrices on their "short" side. As it

is computationally simpler, GBLUP is typically used for practical prediction of breeding

values (Endelman 2011), and can be extended to include individuals for which pedigree

but not genotype data is available (Legarra et al. 2009).

Alternate parameterizations of the marker-based rr-BLUP model can accommodate

different genetic architectures than the intesimal model assumed by rr-BLUP. Both Bayes B

and Bayesian LASSO models accommodate markers with larger effects size by assuming
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non-gaussian prior distributions of marker effects and estimating effects through the Gibbs

sampler Markov chain Monte Carlo method (Pérez and De Los Campos 2014). Like ridge

regression, both models take the form y∼µ+Zu+e, where Z is a design matrix of markers

and u is a vector of random marker effects. In the BayesB model, a certain proportion of

markers given by the prior probability π (ui |σ2
i ,π) are assumed to have an effect size of

0, with the remainder having effects following a scaled-t distribution (Meuwissen et al.

2001). Bayesian LASSO assumes that marker effects are distributed according to a double

exponential (laplace;λ) distribution that assumes a greater frequency of marker effects near

zero and in the tails (Legarra et al. 2011). Other "bayesian alphabet" models include BayesA,

which shares BayesB’s scaled-t distribution but lacks a "spike" of markers with no effect,

and BayesC, which swaps BayesB’s scaled-t distribution for a gaussian distribution. As with

rr-BLUP, predictions of genotypic values are obtained by summing marker effects. Both of

these models may show a substantial improvement over GBLUP and rr-BLUP in populations

and for traits where major genes are associated with a substantial portion of additive genetic

variation. So-called "deep learning" methods that use more complicated models can be

used for prediction as well, but produce similar or equivalent results to GBLUP models, in

part because they likely use marker data to estimate relationships between relatives "under

the hood" (Ubbens et al. 2021).

1.4 Yield components

1.4.1 The Yield Component Framework

For most wheat breeding programs, the primary focus is on improving grain yield. The

nature of yield makes it challenging to characterize genetically. The final yield of a plot

of wheat reflects the whole history of genetic and environmental processes created and

experienced by plants within that plot, making it in some respects analogous to overall

fitness. Because of this, causal variants that have some effect on any given phenotype

will have at least some small effect on yield. Because of the overwhelming number of loci

contributing to yield variation, genomic selection models and standard breeding practices

that operate under the assumptions of the infinitesimal model generally work well for

wheat yield (see Sarinelli et al. (2019)). At the same time, sequence variation affecting major

developmental genes controlling both phenology and spike development in wheat can lead
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to large yield effects, but often in an environment-specific manner (Addison et al. 2016;

Lozada et al. 2019; Dreisigacker et al. 2021). While treating yield as a fully infinitesimal

trait can and has worked well to move population means, an understanding of these major

variants and their interaction with environmental conditions to generate yield variation

may improve our understanding of yield variation and our ability to target varieties for

specific environments.

Geneticists and breeders have made studying the bases of yield variation more tractable

by studying simpler component traits that have a direct causal relationship with overall

grain yield (Brinton and Uauy 2019). Yield component traits relate to mathematical com-

ponents of yield that may differ in their genetic bases. Total yield is treated as the direct

product of spike number per square meter and per-spike yield. Per-spike yield (SY) results

from the multiplication of kernel number (KN) and kernel size (known as thousand grain

weight, TGW), which can be treated respectively as products of kernels per spikelet (KpS)

and spikelets per spike (SpS), and of kernel density (known as test weight, TW), kernel

length (KL), and width (KW) squared. Variation in these traits have different environmental

and genetic bases. As an example, spikelets per spike is determined early on in the develop-

ment of the wheat spike prior to heading, influenced by genetic variants controlling the

duration of spike development and the environmental conditions experience by plants

prior to heading (Boden et al. 2015). On the other hand, kernel width is under the control

of factors that include genetic variants that alter cell size in the grain, the amount of carbo-

hydrates allocated to those grains, and the environmental conditions during grain fill that

are generated by plants’ previous decisions on developmental rate. As spikelets per spike is

already fixed when kernel width is still plastic, it can have a causal effect on that subsequent

trait – for example, if plants are source-limited, an increase in spikelets per spike and thus

total kernel number will decrease the mean width of each individual kernel. Each of these

traits have different bases at the intersection of complex sets of environmental and genetic

processes that are separate physiologically into different tissues, and temporally into dif-

ferent developmental stages and climatic conditions. Study of the processes contributing

to variation in these individual components may allow geneticists to better understand

the overall relationship between the histories of plants and their environments, and yield.

As one moves further "downstream" to more and more specific components of yield, it is

presumed that these individuals components are under the influence of a smaller number

of causal environmental and genetic effects.
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The study of these components of yield originated with John E. Grafius, who considered

primary yield components as a "geometry of breeding" (Grafius 1956, 1964). In this model,

yield relates to the volume of a rectangular prism with scalar sides representing values for

spikes per square meter, kernel number per spike, and kernel weight. If two sides are held

constant, increasing the third will increase the volume of the prism and therefore yield,

but an increase of one or more component associated with a decrease in another may not

necessarily lead to an increase in the total volume. In many papers presenting on mapping

of QTL for a yield component trait, it is presumed that increasing that single component

will increase overall yield, and serves to justify the research into the identification of those

QTL. This relies on an assumption that modern wheat cultivars are "sink" limited (i.e., a

plant accumulates more carbon than it is able to partition into developing grain, because a

genotype has some genetically determined volume of grain proportional to the product

of the yield components) (Borrás et al. 2004). However, typically a compensatory effect is

observed where increasing grain number concomitantly decreases grain size (e.g. Knott

and Talukdar 1971). This effect may be due to "source" limitation – there only being so

much carbon to go around – or it may reflect pleiotropic relationships of underlying QTL

generated by the genetic pathways they affect. Depending on the pleiotropic relationships,

a yield component QTL may generate a positive yield effect in some environments, and a

negative effect in others.

1.4.2 Exploring Yield Variation Effects through Yield Components

Understanding how major yield component QTL alter yield in an environment-specific

manner may provide insights into breeding lines for given environments, even if straight-

forward use in MAS is not practical. Ultimately, characterization of underlying variants

opens the door to genomic selection models that treat different sets of SNPs differently,

and may be useful for predicting performance under certain conditions, or separating out

the "causal" portion of the genome from sections with smaller or no yield effects. In order

to do this, major yield component genes may be characterized. A gene underlying a major

QTL on 7AL regulating the number of spikelets per spike independent of heading date

was identified as WAPO-A1 (WHEAT ABERRANT PANICLE ORGANIZER 1), an ortholog of

Arabidopsis LFY and UFO (Kuzay et al. 2019, 2022). A major QTL on 6A altering grain width

and size was mapped to TaGW2, a negative regulator of grain weight (Su et al. 2011; Wang

et al. 2018).
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A principal goal of modern genetics research is to understand how individual genes

contribute to differences in grain yield. Their use in the improvement of yield will require

further research into the environment-specific mechanisms through which genetics and

physiology interact as plants develop their reproductive organs, accumulate carbon, and

allocate that carbon into developing grain. In this research, we try to characterize the ge-

netic architecture of phenology and yield component traits within a single population, and

attempt to understand how QTL generate spike yield variation through intermediate traits.

We identify a single yield component, the B1 awn suppressor QTL, and attempt to charac-

terize it on a molecular level, and then understand how it contributes to yield differences in

an environmentally specific manner. We hope this might give insight into methods for the

prediction of yield with information on many QTL, especially when considering variants in

major heading date genes Vrn1 and Ppd1, and major yield component QTL like WAPO-A1

and TaGW2.
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Dvořák, J. (1977). Transfer of leaf rust resistance from Aegilops speltoides to Triticum
aestivum. Canadian Journal of Genetics and Cytology, 19(1):133–141.

Edwards, M. D., Stuber, C. W., and Wendel, J. F. (1987). Molecular-Marker-Facilitated
Investigations of Quantitative-Trait Loci in Maize. I. Numbers, Genomic Distribution
and Types of Gene Action. Genetics, 116(1):113–125.

Endelman, J. B. (2011). Ridge Regression and Other Kernels for Genomic Selection with R
Package rrBLUP. The Plant Genome, 4(3):250–255.

Fain, P. R. (1978). Characteristics of simple sibship variance tests for the detection of
major loci and application to height, weight and spatial performance. Annals of Human
Genetics, 42(1):109–120.

Falconer, D. and MacKay, T. (1995). Introduction to Quantitative Genetics. Longman, 4
edition.

Faris, J. D. (2014). Wheat Domestication: Key to Agricultural Revolutions Past and Future.
In Genomics of Plant Genetic Resources, pages 439–464. Springer Netherlands, Dordrecht.

Faris, J. D. and Gill, B. S. (2002). Genomic targeting and high-resolution mapping of the
domestication gene Q in wheat. Genome, 45(4):706–718.

Faris, J. D., Xu, S. S., Cai, X., Friesen, T. L., and Jin, Y. (2008). Molecular and cytogenetic char-
acterization of a durum wheat–Aegilops speltoides chromosome translocation conferring
resistance to stem rust. Chromosome Research, 16(8):1097–1105.

34



Fisher, R. (1918). The Correlation between Relatives on the Supposition of Mendelian
Inheritance. Transactions of the Royal Society of Edinburgh.

Friebe, B., Jiang, J., Raupp, W. J., McIntosh, R. A., and Gill, B. S. (1996). Characterization of
wheat-alien translocations conferring resistance to diseases and pests: current status.
Euphytica, 91(1):59–87.
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2.1 Abstract

Genetic variation in growth over the course of the season is a major source of grain yield

variation in wheat, and for this reason variants controlling heading date and plant height

are among the best-characterized in wheat genetics. While the major variants for these traits

have been cloned, the importance of these variants in contributing to genetic variation for

plant growth over time is not fully understood. Here we develop a biparental population

segregating for major variants for both plant height and flowering time to characterize the

genetic architecture of the traits and identify additional novel QTL. We find that additive

genetic variation for both traits is almost entirely associated with major and moderate-effect

QTL, including four novel heading date QTL and four novel plant height QTL. FT2 and

Vrn-A3 are proposed as candidate genes underlying QTL on chromosomes 3A and 7A, while

Rht8 is mapped to chromosome 2D. These mapped QTL also underlie genetic variation in

a longitudinal analysis of plant growth over time. The oligogenic architecture of these traits

is further demonstrated by the superior trait prediction accuracy of QTL-based prediction

models compared to polygenic genomic selection models. In a population constructed

from two modern wheat cultivars adapted to the southeast U.S., almost all additive genetic

variation in plant growth traits is associated with known major variants or novel moderate-

effect QTL. Major transgressive segregation was observed in this population despite the

similar plant height and heading date characters of the parental lines. This segregation is

being driven primarily by a small number of mapped QTL, instead of by many small-effect,

undetected QTL. As most breeding populations in the southeast U.S. segregate for known

QTL for these traits, genetic variation in plant height and heading date in these populations

likely emerges from similar combinations of major and moderate effect QTL. We can make

more accurate and cost-effective prediction models by targeted genotyping of key SNPs.

2.2 Introduction

Wheat is a major food crop, contributing nearly 20% of human calories and protein (FAO

2020). Wheat yield is highly polygenic, with variation in yield emerging from variation in

other phenotypes each with different genetic bases. Plant growth traits such as heading

date (when the spike emerges from the flag leaf) and adult plant height affect yield by

both altering resource partitioning between tissues and changing how plants experience
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environmental factors. A plant’s height on a given date alters the physical position of the

plant within its environment, influencing that plant’s interactions with environmental

factors like wind, weed competitors, and rain-splashed pathogens. Differences in heading

date change the temporal position of plants at a given developmental stage, exposing

them to different weather conditions and disease pressures. Wheat breeders typically

select for optimal values of plant height and heading date for a given environment and

production system in early generations based on unreplicated head rows. Beyond this

selection, improvements in yield resulting from modern plant breeding programs have

largely been generated without considering its underlying genetic architecture, including

the dependence of final plant yield on variation in plant growth trajectories. Understanding

the plant development factors that generate genetic variation in yield is critical to increasing

the rate of genetic gain in wheat.
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Figure 2.1: Overview of the wheat flowering time pathway. The gene network through
which wheat plants receive and integrate signal about environmental conditions to deter-
mine heading date are outlined. Other, intermediate genes are not shown. Genes proposed
as candidate for heading QTL in this population are highlighted in green. Other important
genes in the flowering time pathway are highlighted in blue; Wheat CONSTANS (WCO),
Triticum aestivum HD1 (TaHD1), VERNALIZATION1 (VRN1), VERNALIZATION2 (VRN2),
and LEAFY (LFY).

Allelic variation affecting core flowering time genes is strongly associated with the ge-

ographic distribution of wheat cultivars, and permits the cultivation of wheat in a wide

range of environments. Winter wheat is sown in the fall, when it germinates but maintains

the shoot apical meristem beneath the ground to prevent freeze damage. After the accu-

mulation of signal through the vernalization (cold hours), photoperiod (night length), and
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earliness-per-se (plant age) pathways, plants release from winter dormancy and transition

to reproductive development. Allelic series in the Vernalization1 (Vrn1) loci on the three

chromosome 5 homeologues condition a spring or winter growth habit by controlling the

sensitivity of plants to vernalization (Fig. 2.1) (Yan et al. 2004; Fu et al. 2005; Li et al. 2013).

Additional alleles at these loci, some associated with copy number variation, may also

modulate vernalization response in vernalization-sensitive winter lines (Fu et al. 2005; Díaz

et al. 2012; Guedira et al. 2014, 2016; Kippes et al. 2018). Photoperiod1 (Ppd1) is another core

flowering time gene which integrates signals due to length of nights and allows plants to

time flowering based on photoperiod. Variants affecting homeologous Ppd1 loci on all three

genomes lead to constitutive over-expression of Ppd1 and a photoperiod-insensitive, earlier

flowering habit (Beales et al. 2007; Nishida et al. 2013; Guedira et al. 2016). Breeding for an

optimal heading date for a given environment allows plants enough time to add additional

spikelets per spike prior to heading, which increases grain number, and to accumulate

carbohydrates and fill grain, which increases grain size. Non-optimal flowering can expose

plants to temperatures below freezing early in the season, or to excessive heat and drought

late in the growing season. In southern U.S. field sites, Vrn1 and Ppd1 alleles have strong

effects on final grain yield of winter wheat (Addison et al. 2016).

Introduction of "green revolution" dwarfing genes Rht-B1 and Rht-D1 – knock-out mu-

tations in DELLA proteins – into US and CIMMYT germplasm dramatically improved yields

by increasing wheat harvest index and preventing lodging due to applied inorganic nitrogen

fertilizer (Hedden 2003). The effect of the Rht1 genes is conditional on the environment and

the quantity of assimilate produced by the variety, and has been associated with larger grain

number but smaller grain size and weight (Borner et al. 1993). Rht1 alleles disable plants’

ability to respond to giberellic acid (GA-insensitivity), which may have negative effects

on coleoptile length and early plant vigor that can decrease yield in some environments

(Rebetzke and Richards 2000). Increase in seed number and grain yield seems to be related

not to ear development but to the greater availability of assimilates during grain-fill with

reduced biomass partitioned into stalks (Youssefian et al. 1992). Breeders generally select

plants near some optimal height value, as too-short plants have a generally lower yield

compared to semi-dwarfs characteristic of having only one Rht allele (Fischer and Quail

1990). An increasing number of dwarfing genes in wheat have been fine-mapped, and many,

though not most, have been cloned.

Genomic selection is restructuring modern wheat breeding programs. The ability to
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leverage data from past years to predict unobserved lines has tremendous potential to

increase the rate of genetic gain. Beyond yield predictions, heading date and plant height

predictions are valued by breeders, allowing them to exclude phenotypically extreme in-

dividuals without having to dedicate resources to planting and phenotyping in multiple

environments. Standard GBLUP and rrBLUP models are optimized for highly polygenic

traits like yield, but will underestimate QTL effect sizes and perform poorly with traits dom-

inated by a smaller number of larger-effect QTL. Explicitly characterizing and taking into

account large-effect QTL in traits where these QTL explain a substantial portion of additive

genetic variation can increase prediction accuracy (Bernardo 2014; Sarinelli et al. 2019).

This may have even more promise in biparental populations where the number of segregat-

ing causal variants is much smaller. If traits are mostly controlled by a few major variants,

models using markers for just those variants can be predictive and more cost-effective.

Here we set out to understand the genetic basis of plant growth traits in a biparental

common wheat population. Parents were chosen to generate major additive genetic varia-

tion for plant height and heading date and to characterize novel QTL for these traits. Parent

SS-MPV57 carries the large-effect earliness allele Ppd-D1a as well as the smaller-effect

allele Ppd-A1a.1, but no known dwarfing genes. Parent LA95135 caries the major dwarfing

allele Rht-D1b but no known earliness genes except the smaller-effect Ppd-A1a.1 allele. This

parental selection contrasts with typical mapping studies, where the two parents generally

differ for the trait of interest. Here, due to our understanding of already characterized major

variants, we developed a population with the goal of generating transgressive segregation

for our target phenotypes. A high-density sequence-based linkage map was supplemented

with single SNP assays for putative causal variants in order to map novel QTL and study

marker-trait associations for known variants. Phenotypic variation in each environment

was partitioned into components associated with mapped QTL and the polygenic back-

ground in order to assess the relative importance of identified QTL. Different models were

tested for prediction of both traits to determine if a simple QTL model would be sufficient

in the context of a breeding program. Finally, a longitudinal analysis of multiple measures

of plant height over time was used to determine QTL effects over the course of plant growth

in a field season.
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2.3 Materials and Methods

2.3.1 Population Development

Soft-red winter wheat lines developed by southeastern public-sector breeding programs

were screened for alleles at known plant height and heading date variants using Kompetitive

Allele-Specific PCR (KASP) markers. Louisiana State University forage cultivar LA95135

(CL-850643/PIONEER-2548//COKER-9877/3/FL-302/COKER-762) was chosen as a parent

lacking major early-flowering alleles at the Ppd-D1 or Vrn-1 loci, but with a mid-season

heading date when grown in North Carolina. Cultivar SS-MVP57 (FFR555W/3/VA89-22-

52/TYLER //REDCOAT*2/GAINES) developed at Virginia Polytechnic Institute and State

University displayed semi-dwarf stature but lacked dwarfing alleles at the Rht1 loci. SS-

MPV57 carries the Ppd-D1a allele conferring photoperiod insensitivity, and LA95135 has

the Rht-D1b allele conferring semi-dwarfism. Parent lines were crossed, and F1 plants were

selfed to generate an F2 population (hereafter referred to as the LM population). The F2 and

later generations were inbred via the single-seed descent method until the F5 generation,

producing 358 F5-derived recombinant inbred lines (RILs).

2.3.2 Phenotyping

During the winter of 2016-2017, an experiment was conducted in the greenhouse to evaluate

heading date. Imbibed seeds from each RIL were placed in a cold chamber kept at 4◦C for

8 weeks and were transplanted into plastic cones (volume 0.7L, 6.5 cm in diameter and

25 cm depth) containing soil mix. Plants were grown in a completely randomized design

with four replications in a greenhouse set at 16 hr photoperiod and 20◦C /15◦C (day/night)

temperature.

To evaluate the impact of vernalization on the genetic architecture of heading date

and on effects of individual QTL, the greenhouse experiment was repeated with a low-

vernalization treatment in the winter of 2017-2018. This experiment was performed as

above, except that imbibed seeds were placed in the cold chamber for only four weeks

prior to transplanting. In addition, the LM RIL population was evaluated in the field at

Raleigh, NC and Kinston, NC during the 2017-2018 season, and in Raleigh, Kinston, and
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Figure 2.2: Plant growth over time. For each 1-m row plot (differently colored line), a total
of three plant height values was collected in Raleigh in 2019. All plots are shown (A), as well
as a random subset to better visualize plant growth (B). Mean plant growth follows a roughly
linear pattern corresponding to the date collected, with different slopes and intercepts for
each plot.

Plains, GA in the 2018-2019 season, sown in the fall at the locally recommended times for

commercial winter wheat production. The 358 RILs were grown using an augmented set

within replications design to facilitate planting of this large population. RIL experiments

consisted of two fully replicated blocks of all 358 lines organized into five sets of 71 or 72

RILs. The order of the sets within each replication and the order of the RILs within each set

were randomized at each location. Three parental checks were planted at the beginning of
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each set of RILs, along with four or five additional parental checks randomized within each

set.

Plots consisted of 1-m rows spaced 30 cm apart. Adult plant height was measured

as the distance from the ground to the top of the spikes of a sample of tillers from the

center of each row, excluding the awns. Heading date was measured as the day on which

approximately half of the heads in each row had fully emerged from the flag leaf, typically a

few days prior to anthesis. To study plant development over time, three measures of plant

height were collected for each row plot in Raleigh in 2019, with two to four blocks measured

roughly every ten days starting on March 29th and ending on April 25 (when most plants

had fully headed). In this case, plant height at each time point was calculated as the mean

of the height of three randomly chosen primary tillers from the ground to the base of the

apical leaf sheath (Fig. 2.2). All measurements were collected on an android tablet with the

Fieldbook app (Rife and Poland 2014).

2.3.3 Analysis of Phenotypes

For the greenhouse experiments where plants had been completely randomized within

greenhouses, genotype values for RILs were calculated as the mean of the four replications

of each line. For field experiments, best linear unbiased estimates (BLUEs) were calculated

adjusting for these spatial effects. The software ASReml-R (Butler et al. 2017) was used to

calculate BLUEs with an AR1xAR1 correlated residuals model:

Yi k ∼µ+Gi +ui k + ei k

Where Yi k is the observed phenotype for an individual row plot, µ is the intercept, Gi is

the fixed effect of genotype i, ui k is the unit or "nugget" random residual effect for each

observation k representing the component of the variance due to observation or measure-

ment instead of spatial correlation, drawn from a distribution u ∼ i i d N (0,σ2
e ), and ei k is

the spatially-correlated residual drawn from the distribution e ∼N (0,σ2
eΣr (ρr ) ⊗Σc (ρc )),

whose variance is the direct product of an r × r auto-correlation matrix Σr (ρr ) represent-

ing autoregressive correlations in the row direction and c × c correlation matrix Σc (ρc )

representing autoregressive correlations in the column direction. For all environments
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and phenotypes, a full model with autocorrelated columns and rows was found to have

a lower BIC and higher log likelihood than models with just the column autocorrelation

or no spatial correction. BLUEs were calculated as the sum of the genotype effect and the

intercept for each phenotype in each environment.

2.3.4 Genotyping and Linkage Map Construction

Tissue was collected from the F5 greenhouse experiment, and seeds of the four F5:6 plants

from each line were bulked. Genotyping by sequencing (GBS; (Elshire et al. 2011)) was

performed according to Poland et al. 2012 (Poland et al. 2012), with ninety-six individ-

ual samples barcoded, pooled into a single library, and sequenced on an Illumina HiSeq

2500. Tassel5GBSv2 pipeline version 5.2.35 (Glaubitz et al. 2014) was used to align raw

reads to the International Wheat Genome Sequencing Consortium (IWGSC) RefSeqv1.0

assembly (https://wheat-urgi.versailles.inra.fr/Seq-Repository) using Burrows-Wheeler

aligner (BWA) version 0.7.12 to call SNPs (Li et al. 2009). SNPs were filtered to retain samples

with ≤ 20 percent missing data, ≥ 30 percent minor allele frequency and ≤ 10 percent of

heterozygous calls per marker.

KASP markers taken from the literature or designed from exome capture data of the

parents (triticeaetoolbox.org/wheat; Additional file 1: Table S1) were added to the GBS SNP

data for chromosome regions with low marker density and for causal variants segregating in

the population. Filtered SNPs were separated into chromosomes and ordered via alignment

to the reference genome, and a custom script was run to filter out genotyping errors that

would result in a false double recombination due to under or mis-calling of heterozygotes.

The R package ASMap was used to construct the maps as an F5 RIL population (Taylor and

Butler 2017).

2.3.5 QTL Analysis

QTL mapping was performed in the R package r/QTL (Broman et al. 2003). Composite

interval mapping was used for initial QTL identification, and intervals were narrowed using

a multiple QTL model (MQM) as implemented in the refineqtl function. The addqtl function

was used to identify additional QTL using identified QTL as covariates. Empirical signifi-
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cance thresholds for a genome-wide α= 0.05 were determined using 1000 permutations

for each trait. QTL effects were estimated for significant QTL in each environment based

on the estimated MQM positions using the fitqtl functions, which fits a multiple regression

where for genotype values Yi for each individual i, and n QTL Q, Yi ∼
n
∑

h=1
Qi h + ei .

Major variants Ppd-D1 and Rht-D1 alter functions of core genes in the flowering time and

giberellic-acid response pathways, respectively, suggesting that their presence may alter the

effects of other variants impacting those pathways. Taking advantage of the large number

of lines in the LM population, two sub-populations of roughly 160 lines – each divided by

genotype at the major-effect QTL – were created for mapping of each phenotype. Lines

called as heterozygous for the major-effect QTL were excluded. The QTL mapping analysis

was repeated for both of the sub-populations. Identified QTL interactions discovered this

way were validated by modifying the above fitqtl model with a main effect for the identified

QTL and an effect for its interaction with the major classifying QTL.

Variance analysis was performed in the R package lme4qtl, which allows for the fitting

of random effects with supplied covariance matrices (Ziyatdinov et al. 2018). For known

variants for which KASP marker genotypes of the causal polymorphisms were available, the

genotypes were used directly, and for novel QTL genotype probabilities from the refineqtl

object were used. For testing QTL, alleles were encoded in terms of the allele dosage of the

LA95135 allele (0, 1, 2) without estimating a dominance effect.

While BLUEs estimated using the correlated errors model were used for QTL mapping,

to estimate the relative importance of identified QTL in determining total phenotypic

variation at the level of individual plots models were re-fit in each environment using the

unadjusted phenotypes as the response. For each environment and phenotype, QTL effects

and variance components for each the additive and non-additive effects of genotypes were

specified with the mixed model:

Yi k ∼
n
∑

h=1

Qi h + gAi + g I i + ei k

Where for each phenotype Y of genotype i in row plot k, fixed effects for each QTL h were

fit as regressions of allele dosage on phenotypes. gAi represents the random additive effect

of genotype i with a variance specified by the realized relationship matrix (gA ∼N (0, Gσ2
g )),
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calculated using the A.mat function in the R package rrBLUP from the scaled GBS marker

matrix (G= WW′

c , where W is the scaled marker matrix calculated as Wi k = X i k +1−2pk from

the frequency of the 1 allele at marker k (pk ) and the marker matrix X i k . c is a normalization

value calculated as c = 2Σk pk (1−pk )) (Endelman 2011). g I i represents the non-additive

random effect of genotype i with an independent variance (g I ∼N (0, Iσ2
g )).

A modified method from Nakagawa and Schielzeth 2013 (Nakagawa and Schielzeth

2013) was used to estimate variances associated with QTL and variance components from

the specified model. Estimated coefficients for fixed effects are multiplied by the value

of that effect (in this case, the allele dosage), and the variance of these values is taken as

the variance associated with that fixed effect. This R 2-like estimator for mixed models is

defined as:

R 2
LM M =

σ2
f

σ2
f +σ2

r +σ2
e

Whereσ2
r is the variance of the random effects andσ2

f is a variance of independent fixed

effects calculated asσ2
f =

n
∑

h=1
V a r (βh xhk ) for coefficients and effects h and observations k.

For both traits, all QTL were mapped to separate chromosomes, satisfying the assumption

of independence. Using this approach, narrow-sense heritability in this population with n

QTL in i individuals in k head rows is calculated as:

h 2 =

n
∑

h=1
V a r (βhQhk ) +σ2

A

n
∑

h=1
V a r (βhQhk ) +σ2

A +σ
2
I +σ2

e

Where we calculate per-observation QTL effects as the allele dosage of QTL h in plot

k (Qhk ) times the estimated coefficient of each QTL (βh ), and the phenotypic variance

associated with that QTL as the variance of these estimates. The total variance associated

with all QTL is taken as the sum of these individual QTL variances, as all mapped QTL are

located on separate chromosomes and are independent of one another.σ2
A is the variance

component associated with the random gA genotype term fit with the relationship matrix,

andσ2
I as the variance component associated with the random independent g I genotype
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term, which represents some combination of epistatic effects, lack of linkage between

observed markers and underlying causal variants, and deviation of the estimated genotype

values from the true genotype values. Constructing the model in this way, we estimate the

proportion of additive genetic variation associated with a QTL h (pA) as:

pA =
V a r (βQk )

n
∑

h=1
V a r (βhQhk ) +σ2

A

Where pA is taken as the variance of the product of an estimated QTL effect by the allele

dosage of that QTL in k rows, over the total additive genetic variation.

For investigating the effect of QTL on plant height variation over time, individual slopes

of plant height over time measured multiple times for each row were calculated with a fixed

intercept and a random intercept and time slope for each head row. The model was used to

estimate plant height values for each row every day over the course of the month data was

collected. A linear model fitting all relevant plant height and heading date QTL on plant

height on every day was fit, and the partial R 2 values of each QTL calculated for each day

were used to estimate the relative importance of each QTL at each time point.

2.3.6 Prediction of Phenotypes

Different prediction models were assessed to identify an optimal model for heading date

and adult plant height. All models except for the simple QTL multiple regression model

were fit in the R package BGLR (Pérez and De Los Campos 2014), which allows for flexible

fitting of a variety of Bayesian and mixed effects models. A GBLUP model was fit solving the

equation y ∼µ+u + e for u. y is a vector of BLUEs across environments for all RILs, with

unobserved RILs assigned missing values, and u is a vector of random genotype effects with

a variance u ∼N (0, Gσ2
u ), where G is the realized relationship matrix calculated previously

from GBS markers.

A simple multiple-regression QTL model based on identified QTL was fit solving the

equation y ∼µ+
n
∑

h=1
αh Qh + e for n QTL, where Qh encodes the LA95135 allele dosage for

each QTL h in each individual, and αh is the allele effect of QTL h.
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A combined model was also fit specifying both a multiple-regression fixed-effects com-

ponent for QTL effects, and random effects for each genotype constrained by the additive

relationship matrix (y ∼µ+
n
∑

h=1
αh Qh + Iu + e , where u ∼N (0, Gσ2

u )).

BayesB and Bayesian LASSO models were both fit with the general model y ∼µ+Xu+e ,

where X is a design matrix of markers coded by allele dosage of the LA95135 allele, and u is

a vector of random marker effects. In the BayesB model, a certain proportion of markers

given by the prior probability π (ui |σ2
i ,π) are assumed to have an effect size of 0, with the

remainder having effects following a scaled-t distribution (Pérez and De Los Campos 2014).

In the Bayesian LASSO, marker effects were estimated with a double exponential prior

distribution that assumes a greater frequency of both larger marker effects and marker

effects closer to zero than a normal distribution (Pérez and De Los Campos 2014). In

both models, estimated genotype values are calculated as the sum of marker effects Ŷi =

µ̂+
n
∑

j=1
xi j û j , where xi j is the allele dosage of marker j in individual i , and û j is the estimated

marker effect.

A five-fold cross validation approach was used to compare the five models. RILs were

randomly assigned to one of five folds, and genotype values from each environment from

lines in four of the folds were used to predict the values of lines in the fifth fold, repeating

for each fold in each environment for each model. Within each fold, QTL detection was

re-performed as described in the QTL analysis section to identify the QTL used in the QTL

regression and combined QTL and GBLUP model. This process was then repeated 40 times

to get distributions of prediction abilities, calculated as the Pearson’s correlation between

predicted and observed genotype values across all five folds.

2.4 Results

2.4.1 Genetic Map Construction

After filtering, 5691 markers were assigned to 21 linkage groups representing 21 wheat

chromosomes. Average chromosome map length was 208.3 cM, with a maximum individual

chromosome length of 319.1 cM for chromosome 3B. Marker density on the D genome

tended to be much lower than marker densities on the A and B genomes, as expected given
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the much lower D genome diversity in hexaploid wheat (Akhunov et al. 2010).

2.4.2 Population Characterization

Generally, wheat cultivars’ flowering habits are described by their genotypes at major head-

ing date loci, but SS-MPV57 flowered later than LA95135 in all locations despite carrying the

major earliness allele Ppd-D1a (Table 2.1). The difference in heading date was especially

pronounced in the low-vernalization treatments both in the greenhouse (GH 2018) and

in the field (Plains 2019), where SS-MPV57 flowered five and six days later, respectively,

than LA95135. A similar pattern was observed for plant height: although LA95135 was the

only parent genotyped for a major dwarfing allele (Rht-D1b), SS-MPV57 was substantially

shorter in all locations (Table 2.1). For heading date in all locations, the mean genotype

value of the RILs was approximately the mid-parent value. For plant height in Raleigh 2018

and Kinston 2018, the mean genotype value of the RILs was closer to the SS-MPV57 parent

than the mid-parent value. The ranges of genotype values in Raleigh and Kinston were

similar, but the range in heading date in Plains 2019 (26 days) was much larger. This is likely

a result of the warmer winter temperatures at that site, delaying heading of lines with a

greater vernalization requirement.

Table 2.1: Population characteristics. Means and ranges of estimated genotype values for
all RILs, as well as parental values and plot-basis heritabilities (H), for site-year-phenotype
combinations. Heading date for the GH experiments is recorded as days since transplanting
(four weeks (HD4W ) or eight weeks (HD8W ) after vernalization), and for the field experi-
ments time as day of year (DOY).

Loc. Year PhenoµLA µMPV µRILs Range H

GH 2017 HD8W NA NA 45.6 32-61 0.50
GH 2018 HD4W 71.1 76.12 77.1 59-97 0.76
Ral 2018 HD 112.3 112.9 112.3 107-120 0.73
Kin 2019 HD 103.1 104.9 103.6 97-109 0.63
Pla 2019 HD 100.7 106.6 103.1 90-116 0.63
Ral 2018 PH 100.1 92.5 93.7 68-127 0.84
Kin 2018 PH 101.0 94.0 96.0 67-122 0.71
Kin 2019 PH 99.1 94.9 97.5 69-129 0.67
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Table 2.2: Significant heading date QTL for four and eight week vernalization greenhouse
experiments. The chromosome on which each QTL is found is indicated in the QTL name.
For each QTL, the average difference in phenotype between two RILs homozygous for
alternate alleles is given as twice the estimated allele effect of the LA95135 allele (2α), along
with proportion of additive variation associated with each QTL (pA). The most significant
markers for each QTL with a proposed candidate gene was a KASP marker associated with a
previously identified causal polymorphism affecting that gene. Physical positions are given
based on mapping of GBS markers to the IWGSC RefSeqv1.0 assembly.

Treatment QTL Name Candidate Gene Peak Marker Position CI LOD 2α (days) pA

4 Wk Qncb.HD-2D Ppd-D1 Ppd-D1 32-43 Mb 11.5 5.2 0.15
4 Wk Qncb.HD-3A FT2 FT2 118-478 Mb 21.2 6.5 0.25
4 Wk Qncb.HD-4D Rht-D1 Rht-D1 0-352 Mb 22.2 7.2 0.39
4 Wk Qncb.HD-5A NA S5A_395681218 46-438 Mb 5.65 3.2 0.05
4 Wk Qncb.HD-5B NA S5B_462554252 427-523 Mb 4.63 3.6 0.08
8 Wk Qncb.HD-2D Ppd-D1 Ppd-D1 33-44 Mb 15.9 3.9 0.60
8 Wk Qncb.HD-3A FT2 FT2 71-435 Mb 6.67 2.3 0.22
8 Wk Qncb.HD-5B NA S5B_518684640 511-537 Mb 5.17 2.1 0.14

2.4.3 Known Variants and Novel QTL Impact Plant Growth

Genetic variation in quantitative traits like those measured in this study may result from the

segregation of an unquantifiable number of small-effect QTL. Despite this, for both heading

date and adult plant height the vast majority of additive genetic variation was associated

with a small number of major QTL, some of which have been previously described and

some of which are novel.

Heading Date

The RIL population was developed with the expectation that the major photoperiod-

insensitive allele Ppd-D1a inherited from SS-MPV57 would segregate, and that potential

novel early-flowering QTL from LA95135 could be mapped. Two preliminary greenhouse

experiments were conducted to investigate the effect of vernalization treatments on head-

ing date genetic architecture, with imbibed seeds given only four weeks of vernalization in

the first experiment and a full eight weeks in the second. In addition, heading date notes

were collected in three separate field experiments in Raleigh in 2018, and Kinston and

Plains, GA in 2019. QTL were declared significant at α= .05 based on 1000 permutations of
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Figure 2.3: Effect of Qncb.HD-3A and Ppd-D1 QTL on heading date in two different
vernalization treatments. Density plots of BLUEs for heading date in two experiments,
with RILs grouped by their genotype at Ppd-D1 and a marker close to FT-A2. The allele
effect of Ppd-D1 is larger than that of FT-A2 in the 8 week vernalization treatment (2.0 days
versus 1.2), but the effect of the FT-A2 marker is larger in the 4 week vernalization treatment
(2.6 days vs 3.3 days).

the scanone function, but for all phenotypes significance values were near a LOD of 3.5.

Together, Ppd-D1, Rht-D1, and four early-flowering alleles inherited from LA95135 were

associated with differences in heading date in this experiment (Table 2.2, Table 2.3).

A heading date QTL on chromosome 2D co-localized with a known major-effect variant

altering expression of the D-genome copy of pseudo-response regulator gene Photoperiod-

1 (Ppd-D1a) (Beales et al. 2007). This was the major QTL mapped in this experiment,

associated with by far the highest LOD score in both the field environments (Table 2.3) and

the eight week greenhouse treatment (Table 2.2). In the four week treatment the relative

importance of Ppd-D1 was diminished, primarily as a result of changes in the effects of

other QTL.

A QTL in the centromeric region of chromosome 3A is mapped with low physical reso-

lution (> 400 Mb), owing to the low recombination rates found in these regions in wheat

(Table 2.2, Table 2.3). Contained in this interval is FT-A2, an ortholog of FT previously de-

scribed by Shaw et al. (Shaw et al. 2019) as an important component of the wheat flowering

time pathway (Fig. 2.1). A KASP assay designed from a polymorphism within FT-A2 was
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Table 2.3: Significant heading date QTL information from best environment. For each QTL,
information from the experiment where that QTL had the largest estimated effect (Best Env)
is given. The average difference in phenotype between two RILs homozygous for alternative
alleles at each QTL is given as twice the estimated allele effect of the LA95135 allele (2α),
along with proportion of additive variation associated with each QTL (pA). Vrn-A3 only has
a significant effect within the half of the population homozygous Ppd-D1b.

QTL Name Candidate Gene Best Env Peak Marker Position CI LOD 2α (days) pA

Qncb.HD-2D Ppd-D1 Ral 19 Ppd-D1 59-64 Mb 48.6 3.4 0.67
Qncb.HD-3A FT2 Pla 19 S3A_434822203 121-571 Mb 13.0 -2.6 0.12
Qncb.HD-4D Rht-D1 Kin 19 Rht-D1 0-352 Mb 4.85 0.9 0.06
Qncb.HD-5A NA Pla 19 S5A_169302619 51.6-435 Mb 14.1 -2.7 0.15
Qncb.HD-5B NA Kin 19 S5B_511010094 436-476 Mb 7.7 -1.3 0.08
Qncb.HD-7A Vrn-A3 Ral 18 (Ppd-D1b) S7A_72104395 57.7-85.9 Mb 4.23 NA NA

the peak marker for this QTL in both greenhouse experiments (Table 2.2), and had a much

greater effect in the four week vernalization treatment than in the eight week treatment

(Fig. 2.3). Qncb.HD-3A was also identified as significant in all field experiments, but with

alternate peak markers in the long arm of chromosome 3A (Table 2.3).

In addition, two novel early-flowering alleles were identified on chromosomes 5A and

5B (Table 2.3). Both QTL are significant in all environments (Additional file 2: Table S3).

Qncb.HD-5A is the third-most important QTL in most environments, but has an especially

large effect in the Plains, GA field experiment. The QTL is also significant in the four week

vernalization greenhouse treatment, but not the eight week treatment. The increased QTL

effect in these two environments having shorter duration of cold temperature exposure

suggests that Qncb.HD-5A may interact with genes involved in vernalization response.

Due to its centromeric position, the confidence interval for the QTL contains 383 Mb of

chromosome 5A (Table 2.3). Notably, despite the response of this QTL to vernalization

treatment, this interval does not encompass the Vrna-A1 locus.

Qncb.HD-5B is located in a more distal position on the long arm of the chromosome

and was mapped to an interval of 61 Mb. This interval is proximal to Vrn-B1, excluding that

locus as a candidate gene. Unlike Qncb.HD-5A, significance and effect sizes of Qncb.HD-5B

are similar in both the four and eight week vernalization treatments (Table 2.2).

The major plant height QTL Rht-D1 was also identified as having a pleiotropic effect

on heading date in this population. In most environments the effect on heading date was
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Figure 2.4: Major variants diminish effects of other QTL. Vrn-A3 alters heading date in
most environments, but only in a Ppd-D1 sensitive background. The dwarfing effect of
Qncb.PH-3D is greater in an Rht-D1a (tall) background.

minor, and not significant in the eight week greenhouse treatment or in Plains in 2019.

However, in the four week greenhouse treatment Rht-D1 was a highly significant QTL,

with an average difference of over seven days between plants homozygous for wild type or

semi-dwarf alleles (Table 2.2).

A benefit of large population sizes is the ability to subset the population by major-effect

variant allele and perform QTL analyses on the sub-populations. In the case of the Ppd-D1a
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insensitive allele, constitutive over-expression of Ppd-D1 may obscure effects of variation

elsewhere in the flowering pathway. After dividing the population by Ppd-D1 allelic class and

performing QTL analyses on the sub-populations, an additional early-flowering allele from

LA95135 was identified on the short arm of chromosome 7A only in a Ppd-D1b photoperiod-

sensitive background, and only in the field experiments (Table 2.3). The confidence interval

for this QTL contains the Vrn-A3 locus. Vrn3 in wheat was identified as an FT ortholog

(TaFT1), and serves as the primary integrator of flowering time signal, being translocated

from the leaves to the shoot apical meristem to initiate the transition to reproductive

growth (Fig. 2.1) (Yan et al. 2006). A variant in the D-genome copy of this gene, Vrn-D3a,

was identified by (Chen et al. 2010) as a determinant of flowering time in winter wheat.

A deletion of a GATA box in the promoter region of Vrn-A3 has been recently associated

with delayed flowering time in tetraploid durum wheat (Nishimura et al. 2018), and an

additional polymorphism linked to differences in heading date and spikelets-per-spike

has also been identified in common wheat (Chen et al. 2020). Screening the population

with a KASP marker developed around the GATA box deletion (Additional file 1: Table S1)

reveals that the population segregates for the deletion, with SS-MPV57 contributing the

late-flowering deletion allele. While Qncb.HD.7A has a relatively small additive effect, it

strongly interacts with Ppd-D1a (Fig. 2.4). In a background containing the insensitive over-

expression Ppd-D1 allele, there is no difference in heading date between lines with and

without the Vrn-A3 promoter deletion. In a Ppd-D1b background, however, the GATA box

deletion is associated with significantly delayed heading date of approximately one day (Fig.

2.4). In wheat, Ppd1 acts to trigger expression of Vrn3 through signaling intermediates (Fig.

2.1), thus an interaction between the two fits with our understanding of their placement in

a common pathway. This promoter deletion is a strong candidate for the variant underlying

the chromosome 7A heading date QTL.

Adult Plant Height

Major QTL for plant height were initially mapped to chromosomes 4D, 2D, and 3D (Ta-

ble 2.4). Using the MQM model, additional adult plant height QTL on chromosomes 1A, 2B,

and 5B were also identified (Table 2.4). As expected, known variant Rht-D1b inherited from

LA95135 was by far the largest-effect QTL across environments. Except for Qncb.PH-5B, all

other reduced plant height alleles were inherited from SS-MPV57.
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Table 2.4: Significant plant height QTL information from best environment. For each QTL,
information from the experiment where that QTL had the largest estimated effect (Best Env)
is given. The average difference in phenotype between two RILs homozygous for each QTL
is given as twice the estimated allele effect of the LA95135 allele (2α), along with proportion
of additive variation associated with each QTL (pA). The confidence interval for Rht8 is
consistent with prior studies placing the QTL distal to Ppd-D1.

QTL Name Candidate Gene Best Env Peak Marker Position CI LOD 2α (cm) pA

Qncb.PH-1A NA Kin 19 S1A_517409836 513-533 mb 4.01 3.6 0.03
Qncb.PH-2B NA Kin 18 S2B_662556874 530-691 mb 3.41 2.9 0.05
Qncb.PH-2D Rht8 Kin 18 S2D_32151744 23.3-32.2 mb 27.9 9.4 0.32
Qncb.PH-3D NA Ral 18 S3D_476608044 477-527 mb 10.0 5.4 0.08
Qncb.PH-4D Rht-D1 Kin 19 Rht-D1 0-352 mb 71.9 -19.6 0.68
Qncb.PH-5B NA Kin 18 S5B_511010094 463-524 mb 7.51 -5.6 0.05

The mapped position of the plant height QTL located on chromosome 2D is consistent

with reported positions for Rht8 (Gasperini et al. 2012). After the two major gibberellic-acid

insensitive dwarfing genes Rht-D1b and Rht-B1b, the most commonly used gene is Rht8,

which is tightly linked to Ppd-D1 (Worland et al. 1998). In most environments, the marker

most closely associated with QPH.ncb-2D is mapped closely distal to Ppd-D1. In an effort to

tease apart the effects of photoperiod insensitivity and Rht8 on plant height, we evaluated

a terminal spike-compaction phenotype often associated with Rht8 segregating in the LM

population. This trait was rated in the field in Raleigh in 2019, and the major QTL was

co-located with the plant height locus on the short arm of chromosome 2D (Additional file

1: Figure S1). We did not observe any significant interaction between Rht8 and Rht-D1.

We identified Qncb.PH-3D as a novel plant height QTL, with a smaller effect than either

Rht-D1 or Rht8 (Table 2.4). Despite the low marker density on chromosome 3D, Qncb.PH-3D

was consistently localized to a 50-Mb interval on the long arm. Rht-D1b alters the function

of an important component of the giberellic acid response pathway, so we may expect

differential QTL effects in different Rht-D1 backgrounds. We find that while Qncb.PH-3D

was identified in all environments, the effect on plant height is much greater in a Rht-D1a

(tall) background (Fig. 2.4). As SS-MPV57 is responsive to giberellic acid, the observed

interaction between Rht-D1 and Qncb.PH-3D will require further study, and may point to

the identification of candidate genes for this QTL.

Three additional QTL (Qncb.PH-1A, Qncb.PH-2B, and Qncb.PH-5B) were also identified

in one environment each, but when fit in the combined multiple QTL model all were
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Figure 2.5: Variance associated with QTL and variance components for heading date and
plant height in multiple environments. Non-additive genetic variation may be a result of
epistatic interactions between QTL or mis-estimation of genotype values. Ppd-D1 and Rht-
D1 dominate additive genetic variation for their respective phenotypes, but other mapped
QTL explain a substantial portion of genetic variation. The scaling of total additive genetic
variation is in large part due to the expression of Ppd-D1 or Rht-D1 effects.

significant with p < .001 in all environments (Additional file 2:Table S4).

2.4.4 QTL with Major and Moderate Effects Explain Most of Additive

Genetic Variation and Generate Transgressive Segregation

Within-field phenotypic variance was partitioned in order to assess the genetic architecture

of plant growth traits in this population and the relative importance of different mapped QTL

in explaining observed differences (Fig. 2.5). For both heading date and adult plant height,
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major effect QTL dominate additive genetic variation in most environments. Major-effect

variant Ppd-D1 was associated with a majority of additive genetic variation for heading date,

except in the southern-most location of Plains, GA in 2019 (Fig. 2.5). In this environment,

the polygenic additive genetic variation for heading date was similar to that associated

with Ppd-D1. The modified architecture in a distinct environment suggests the presence

of QTL with smaller effects conditional on photoperiod and vernalization signal. FT2 and

Qncb.HD-5A also increased in importance in the Plains 2019 environment, indicating that

the effects of these moderate-effect QTL may also vary based on environmental conditions.

Major-effect variant Rht-D1 explained a majority of the additive genetic variation for plant

height except in Kinston, NC in 2018 where Rht8 explained a similarly sized proportion of

variation (Fig. 2.5). The relative expression of these QTL in specific environments plays a

large role in determining the observed variation both in genotype values and in phenotypes.
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Figure 2.6: Heading date and plant height characters of parental lines are mostly deter-
mined by major QTL. For both heading date and plant height, the most phenotypically
extreme individual was considered as the baseline for each environment and compared
to both the distribution of genotype values and estimated QTL effects for the difference
between two inbred lines (2α). Observed genotype values for the parental lines in each
environment (dashed lines) are compared to the cumulative effects of their alleles.

66



A central question of this study is if variation in these plant growth traits is largely

attributable to segregation of large-effect variants, or if identified variants are instead

only contributing to largely polygenic differences in heading date and plant height. The

plant height and heading date characters of the parental lines were found to be almost

entirely determined by either major Ppd-D1 and Rht-D1 alleles, or cumulative effects

of the stable, moderate-effect QTL identified in this study (Fig. 2.6). The transgressive

segregation observed in this study, where both parents are phenotypically similar in terms

of heading date and plant height, is being driven primarily by segregation of these major

and moderate-effect QTL.

For heading date, the effects of Ppd-D1 and Rht-D1 were mostly sufficient to explain the

observed phenotypes of SS-MPV57, and the phenotypes of LA95135 were mostly explained

by the QTL effects of earliness alleles inherited from that parent (Fig. 2.6). In Raleigh

in 2018, Ppd-D1 has the largest effect, visible in the apparent bimodal distribution of

genotype values. Plants in this environment experienced the coolest winter temperatures

and had the latest mean heading dates (Table 2.1). The differences between the two parents

is greatest in Plains in 2019, where the effect of Ppd-D1 is relatively reduced and larger

effects are observed for earliness alleles inherited from LA95135. Plants in this environment

experienced the warmest winter temperatures and had the greatest range in heading dates.

For plant height, the effect of Rht-D1b largely determines the semi-dwarf character of

LA95135, along with some contribution from novel plant height QTL on chromosome 5B.

The semi-dwarf character of parent SS-MPV57 is largely generated by known dwarfing QTL

Rht8 and the novel QTL on chromosome 3D, with some contribution from novel QTL on

chromosomes 1A and 2B.

2.4.5 QTL Models Out-Perform Genomic Selection for Oligogenic Traits

To assess the implications of the apparent oligogenic architecture of plant growth traits, a

five-fold cross validation approach was used comparing a standard GBLUP model using

genome-wide GBS markers to a simple multiple-regression QTL model based on previously

estimated QTL effects (Table 2.5, Table 2.6).

Across all environments for both phenotypes, the simple QTL regression model is nearly

as predictive as the top-performing model incorporating genome-wide marker information.
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Table 2.5: Prediction accuracies for heading date. Mean prediction abilities and their
standard deviations estimated from 40 replications of five-fold cross validations using QTL
regression, GBLUP, QTL fixed effects plus GBLUP, Bayes B, and Bayesian Lasso models.

Model Ral18 Kin19 Pla19
µ sd µ sd µ sd

QTL Regres. 0.67 0.010 0.63 0.015 0.60 0.004
GBLUP 0.38 0.025 0.39 0.025 0.53 0.021
QTL/GBLUP 0.70 0.008 0.66 0.010 0.64 0.008
Bayes B 0.71 0.012 0.68 0.018 0.64 0.016
Bayes Lasso 0.63 0.018 0.58 0.024 0.63 0.022

Table 2.6: Prediction accuracies for plant height. Mean prediction abilities and their stan-
dard deviations estimated from 40 replications of five-fold cross validations using QTL
regression, GBLUP, QTL fixed effects plus GBLUP, Bayes B, and Bayesian Lasso models.

Model Ral18 Kin18 Kin19
µ sd µ sd µ sd

QTL Regres. 0.77 0.004 0.69 0.007 0.79 0.005
GBLUP 0.24 0.032 0.35 0.024 0.26 0.032
QTL/GBLUP 0.80 0.005 0.74 0.007 0.81 0.006
Bayes B 0.79 0.007 0.71 0.009 0.79 0.007
Bayes Lasso 0.67 0.015 0.50 0.030 0.70 0.014

The GBLUP model commonly used in applied wheat breeding is comparatively ineffective

in predicting heading date and especially plant height within the biparental population.

Incorporation of genomic relationship information into the QTL regression model only

offers slight performance increases compared to the base model, suggesting the genomic

relationships do not add much additional information. The Bayes B model, designed to

allow for marker effects of zero, performs the best for heading date (Table 2.5). For plant

height, the GBLUP model with QTL fixed effects is superior (Table 2.6). In general, the

Bayesian Lasso model is superior to the GBLUP model but inferior to the other models,

except for heading date in Plains in 2019 where the relative proportion of additive genetic

variation associated with the polygenic background was the highest.
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2.4.6 Variation in plant growth is generated by major QTL

Plant height variation before maturity is caused in part by differences in development

related to heading date variation, and thus may be controlled by QTL for both mature plant

height and heading date. Multiple measures of plant height were collected from the RIL

population planted in Raleigh during the 2019 field season, and a longitudinal model was

used to estimate plant height over the measured time window. Identified heading date and

adult plant height QTL were fit in a multiple regression model to estimate the proportion of

phenotypic variation in plant height on a given day associated with each QTL. Variation in

simulated genotype values were normalized by total QTL variation explained, and plotted

over time to assess the relative importance of QTL in variation in plant height over time

(Fig. 2.7).

As expected, the proportion of variation explained by the three adult plant height QTL

(Rht-D1, Rht8, and Qncb.PH-3D) increases towards the end of the date range (March 29

to April 29, from near winter dormancy release to heading). Heading date QTL are more

important than adult plant height QTL for early season plant height, when plants transition

from vegetative to reproductive growth. The four heading date loci (Ppd-D1, Qncb.HD-5A,

FT-A2, and Vrn-A3) continue to explain a large portion of variation in plant height as plants

near heading, although their contribution diminishes as plants mature. Interestingly, the

proportion of variation explained by QTL associated with Vrn-A3 and Rht8 were relatively

consistent throughout development. Rht-D1, mapped as both a heading date and adult

plant height QTL in this population, is associated with a large proportion of phenotypic

variation throughout the date range.

2.5 Discussion

2.5.1 Unexplained Parental phenotypes result from novel QTL

Understanding the genetic basis of plant development is critical for understanding ge-

netic variation for yield. In wheat, early flowering and plant height are understood to be

largely determined by known large-effect variants; the mutations in the DELLA protein

RHT1 (reduced height 1) on chromosomes 4B and 4D for plant height, and variation in
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Figure 2.7: Relative importance of QTL for plant height over time. QTL associated with
heading date (blue and green; Ppd-D1, Qncb.HD-5A, FT2, and Vrn-A3) explain over half of
plant height variation associated with QTL at the beginning of data collection, but explain
only approximately a quarter thirty days after data collecting began. The relative importance
of plant height QTL (orange; Rht-D1, Rht8, and Qncb.PH-3D) increases over time.

vernalization-response Vrn1 and photoperiod-response Ppd1 genes for flowering time.

Breeders generally select plants with plant heights and heading dates near some optimal val-

ues for their target environments, so that most cultivars have one of Rht-B1b or Rht-D1b but

not both. In the southeastern US, most cultivars have some combination of early-flowering

winter alleles of the Vrn1 loci and one or more insensitive alleles of the Ppd1 loci. Despite

this, some cultivars with near-optimal values for heading date and plant height do not carry

any known early flowering time or dwarfism alleles (for example, the two parents used in

this study), and the relative importance of these major QTL versus other, smaller effect QTL

in generating genetic variation for plant height and heading date is not known.

In other crop species such as maize, the majority of additive genetic variation in heading

date and adult plant height is generated in a polygenic manner through the combination of

many small-effect, unmapped QTL (Buckler et al. 2009; Peiffer et al. 2014). The importance

of major-effect QTL in wheat (and other selfing species such as rice (Huang et al. 1996))

suggests that these traits may have a less polygenic basis in these species. Here we developed

a biparental population by crossing cultivar LA95135, a cultivar with a normal flowering

time but no early-flowering variants other than the weak photoperiod insensitive allele
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Ppd-A1a.1, to SS-MPV57, a cultivar with a normal height but no known Rht1 variants.

Within this population, additive genetic variation for plant growth phenotypes emerges

from known major-effect QTL and multiple novel moderate-effect QTL, instead of primarily

from polygenic background effects of many small-effect QTL.

We find one plant height QTL on chromosome 2D, mapped distal to Ppd-D1, that likely

represents Rht8. Cultivars having the Rht8 dwarfing allele are responsive to gibberrellic-acid

(Korzun et al. 1998), and the gene has a smaller effect on plant height than reported effects

of Rht-B1 and Rht-D1, in agreement with the allele effects estimated in this study (Rebetzke

et al. 2012). Additionally, we propose newly characterized variants in genes FT2 and Vrn-A3

as candidates underlying QTL on chromosomes 3A and 7A, respectively. Additional novel

plant height QTL were mapped to chromosomes 3D, 1A, 2B, and 5B, and additional heading

date QTL to chromosomes 5A and 5B. When considered jointly, the effects of these QTL and

Ppd-D1 and Rht-D1 are mostly sufficient to explain the phenotypes of the parental lines.

Our ability to identify these novel QTL despite their comparatively small effect size may be

attributable to the large population size, twice that of many winter wheat RIL populations.

Combining these moderate-effect QTL can produce plants with a short enough height

and an early enough heading date. Like other non-Rht1 dwarfing genes, Rht8 and Qncb.PH-

3D do not confer GA-insensitivity to SS-MPV57 (data not shown). A major limitation of the

GA-insensitive Rht1 genes is a reduced coleoptile length, which can lead to poor emergence

and weak competition. While lines carrying Rht8 alone are often too tall, semi-dwarf lines

like SS-MPV57 produced by stacking Rht8 with Qncb.PH-3D may perform better than Rht1

semi-dwarfs in certain environments (Worland et al. 1998). The insignificant effect on plant

height of Qncb.PH-3D in an Rht-D1b (semi-dwarf) background also reduces the potential

of producing transgressive segregants that are too short from crosses between Rht-D1b

and Qncb.PH-3D-dwarf cultivars. The position of Qncb.PH-3D distally on the long arm

facilitates its fine-mapping, and identification of a predictive marker or the underlying

causal polymorphisms will facilitate marker-assisted selection of this QTL in developing

GA-sensitive semi-dwarf cultivars.

The use of major Ppd1 and Vrn1 variants in cultivar development also has associated

drawbacks. In both cases, the early-heading character is a result of the plant losing its ability

to receive signal from its environment – in wild-type photoperiod-sensitive genotypes,

plants use information about changing night lengths to flower at an appropriate time,

whereas photoperiod-insensitivity activates this pathway constitutively. Losing the ability
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to respond to environmental cues may incur yield penalties in some situations. For example,

autumn sown wheat lines with little or no vernalization requirement that are insensitive

to photoperiod are susceptible to late spring freeze. However, requiring a long period of

cold to potentiate flowering in environments with warm winters can result in delayed

heading, even in lines having photoperiod insensitive alleles. This effect was observed in

this study with the proportionally decreased effect of Ppd-D1 in the Plains environment,

which is farther south than the other locations and has shorter nights during the wheat

growing season. A set of early flowering QTL with different environmental triggers or of more

moderate effects, like those mapped here, provide breeders with additional tools to develop

appropriate cultivars for various target environments. Fine-mapping and characterization

of Qncb.HD-3A, Qncb.HD-5A, and Qncb.HD-5B will expand the flowering time toolbox for

wheat breeders.

2.5.2 The oligogenic trait architecture of plant growth traits in wheat

In wheat, genetic variation in yield is dependent on yield components (e.g. kernel weight,

kernel number per spike, spikelets per spike) that can be influenced by disease resistance,

plant height, and heading date, among other traits. While yield variation itself is complex,

this complexity may arise through a combination of variation in other traits which may

not necessarily have a polygenic architecture. We observe only a small fraction of the total

genetic variation for heading date and plant height in this population associated with lines’

polygenic background. Even when not considering major-effect alleles Rht-D1 and Ppd-D1,

the remaining moderate-effect QTL explain more than twice the additive genetic variation

as the polygenic background. While it is impossible to extend the results of this biparental

study to wheat generally, the variation in heading date and plant height observed in this

population is similar to the range of values observed in preliminary yield trials in breeding

populations. It is likely the case that, while the particular variants differ from population

to population, that the genetic architecture of plant height and heading date are similar

across breeding populations in wheat.
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2.5.3 Challenges and opportunities for genotype-based prediction of

plant growth traits

The genetic architecture of plant growth has important implications for modern wheat

breeding programs. Yield is the primary target of wheat breeders, and standard genomic

selection models perform well for this trait in southeast U.S. wheat breeding programs

(Sarinelli et al. 2019; Ward et al. 2019). Standard models shrink estimated effects of large-

effect variants closer to zero, which will reduce accuracy of models for traits mostly condi-

tioned by relatively few large-effect variants (Bernardo 2014). Given the effects of heading

date and plant height variation on generating yield variation in wheat, if a handful of major

QTL dominate these traits they may also have large effects on yield, complicating assump-

tions of these models. At the same time, heading date and plant height are themselves

traits of interests to breeders, who screen biparental populations to remove transgressive

segregants for these traits.

We show that the majority of additive genetic variation for heading date and plant

height is controlled by large-effect QTL, such that a simple QTL model is sufficient for

accurate prediction of phenotypes. In this case given marker information for major and

moderate-effect QTL and a genotyped training population, a simple QTL model is likely to

be effective for eliminating transgressive segregants for heading date and plant height. This

model has the added benefit of being much cheaper than genomic selection if markers for

polymorphisms linked to variants are available. Instead of genotyping a population of a set

size with genome-wide markers, making predictions with genomic selection models, and

then removing transgressive segregants for plant height and heading date, breeders can

instead screen larger populations initially with simple makers for major QTL, and focus

genotyping resources on lines predicted to be near optimal values for those secondary

phenotypes. While QTL mapping was necessary to identify many important QTL for pre-

diction in the QTL regression model in this population, this population was constructed

specifically to segregate for novel heading date and plant height QTL. Our expanding knowl-

edge of variants underlying these oligogenic traits results in the development of breeding

populations where the major QTL will be known and predictions for heading date and plant

height can be made. If we have genotypes for the causal polymorphisms underlying these

QTL, we can make predictions in new populations regardless of their relationship to the

training population lines. Fine-mapping and marker development for these and further

novel QTL will then improve prediction models.
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2.5.4 Plant growth QTL and variation for source traits

In the past few years, a number of variants impacting yield component traits that generate

variation in sink tissues have been identified and cloned (Wang et al. 2018; Dixon et al.

2018; Kuzay et al. 2019; DeWitt et al. 2020). However, increasing the frequency of variants

associated with larger grain size and number will only increase yields if plants produce

sufficient carbohydrates ("source") to fill those grains. Similar characterization of important

QTL underlying variation in physiological source traits will therefore also be critical to

understand the components of yield variation. Variation in NDVI (normalized difference

vegetation index) measurements or direct biomass samples, taken as proxies for source

availability, is related to variation in the plant growth traits studied here. Both heading date

and adult plant height can be viewed as components of the continuous phenotype of plant

growth over time. While adult plant height is controlled by what are termed plant height

QTL, juvenile plant height is often understood as winter dormancy release and is largely

under the same genetic control as heading date (Guedira et al. 2014). To understand the

genetic basis of plant growth in this population, we measured plant height over multiple

days during development. We showed that variation in plant growth is influenced by a

combination of heading date and plant height QTL. Studies of plant source traits may find

it useful to consider phenotyping experiments for plant height and heading date as well to

distinguish between QTL for heading date and plant height, and true source or biomass

QTL. Understanding how plant height and heading date QTL interact to generate variation

in plant growth over time will be critical to understanding how they impact source traits

and in characterizing novel plant source QTL that can be deployed for higher yielding

genotypes.

2.6 Conclusions

The polygenic nature of wheat yield results in part from major and moderate QTL for

adaptation traits and other phenotypes that influence yield. It is therefore useful to consider

and select for component phenotypes like disease resistance and plant growth traits that

can influence yield separately, and to properly model these traits we need to first understand

their genetic architectures. Already the simple genetic basis of many disease resistance

genes has made MAS for disease resistance in wheat very useful to breeders, a success
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story that could be replicated with plant growth traits given cost-effective predictions. Here,

we show that component phenotypes of plant growth over time have an oligogenic basis

dominated by QTL of major and moderate effect that allows for their prediction with simple

QTL regression models. The movement towards genomic selection has called into question

the utility of fine-mapping and positional cloning studies. We demonstrate the importance

of major QTL and the poor performance of standard models in this study, illustrating the

utility of understanding the important variants underlying these traits and others to crop

improvement.
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3.1 Abstract

Wheat (Triticum aestivum) yield is impacted by a diversity of developmental processes

which interact with the environment during plant growth. This complex genetic architecture

complicates identifying quantitative trait loci (QTL) that can be used to improve yield.

Trait data collected on individual processes or components of yield have simpler genetic

bases and can be used to model how QTL generate yield variation. The objectives of this

experiment were to identify QTL affecting spike yield, evaluate how their effects on spike

yield proceed from effects on component phenotypes, and to understand how the genetic

basis of spike yield variation changes between environments. A 358 F5:6 RIL population

developed from the cross of LA-95135 and SSMPV-57 was evaluated in two replications at

five locations over the 2018 and 2019 seasons. The parents were two soft red winter wheat

cultivars differing in flowering, plant height, and yield component characters. Data on

yield components and plant growth were used to assemble a structural equation model

(SEM) to characterize the relationships between QTL, yield components and overall spike

yield. The effects of major QTL on spike yield varied by environment, and their effects

on total spike yield were proportionally smaller than their effects on component traits.

This typically resulted from contrasting effects on component traits, where an increase

in traits associated with kernel number was generally associated with a decrease in traits

related to kernel size. In all, the complete set of identified QTL was sufficient to explain

most of the spike yield variation observed within each environment. Still, the relative

importance of individual QTL varied dramatically. Path analysis based on coefficients

estimated through SEM demonstrated that these variations in effects resulted from both

different effects of QTL on phenotypes and environment-by-environment differences in

the effects of phenotypes on one another, providing a conceptual model for yield genotype-

by-environment interactions in wheat.

3.2 Introduction

Wheat breeders have increased grain yield and stability by selecting for greater yield po-

tential, despite little understanding of the genetic basis of that potential. Breeders and

geneticists have successfully characterized the genetic basis of disease resistance and used

marker-assisted selection (MAS) to deploy resistance in new cultivars, but the character-
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ization and use of beneficial variants for yield potential has been less successful. One

approach to disentangle the complexity of grain yield is to break it down into component

traits (Grafius 1964; Brinton and Uauy 2019). In this view, per-acre wheat yield is a product

of the number of spikes per square meter and spike yield (SY), which can be thought of as

the product of kernel number per spike (KN) and thousand kernel weight (TKW) (Figure

3.1). Thousand kernel weight can be further decomposed into kernel area (KA), kernel

width (KW), kernel length (KL), and kernel density). Kernel number per spike depends on

the number of spikelets per spike (SpS), and the mean number of kernels per spikelet (KpS,

related to floret fertility). Increased kernel number, rather than kernel weight, has driven

increased wheat yield (Fischer 2008). Researchers understand that plants typically com-

pensate for an increase in kernel number through a decrease in kernel size and vice-versa,

but the extent to which this is driven by pleiotropy or physiology is unclear (Knott and

Talukdar 1971). Loci with positive impacts on grain size with no kernel number tradeoff

exist, suggesting it is possible to improve yield by identifying yield component QTL (Sadras

2007; Griffiths et al. 2015). Evidence that most modern wheat cultivars are sink-limited

(Borrás et al. 2004), suggests that negative correlations between grain size and number may

result from the mechanisms of underlying genes rather than resource constraints.

SY

KN

KpS

SpS

KL

KW

KA TKW

TW
Mean Kernel

Length

Mean Kernel

Area

Mean Kernel

Width

Spike Yield

Mean Kernel

Weight
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Kernels per

Spikelet

Spikelets per
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Figure 3.1: Phenotyping of yield component traits in the LM population The full set of
phenotypes collected as in this figure is representative of the Raleigh NC, Kinston NC, and
Plains GA locations in 2019. Collected phenotypes are related to the phenotypes within
the conceptual yield component model, where phenotypes are taken to be the product of
parent phenotypes, such that S Y = T K W ∗K N , T K W = T W ∗K W ∗K A, and so on.
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Selecting for increases in sink tissue is therefore a promising strategy for increasing

yield. Mapping and cloning of the major variants influencing floral and grain morphology

may facilitate prediction through MAS and improved GS models, but importantly should

provide insight into the biology underlying phenotypic variation. The development of

genomic resources in the wheat community has led to the mapping and cloning of well-

studied wheat alleles with large effects on floral and grain morphology, including super-

domestication gene Q controlling the spelt character (Simons et al. 2006), S controlling the

semi-dwarf and spherical grain characters of sphaerococcum wheat (Cheng et al. 2020),

and B1 controlling the awnless character in most germplasm (DeWitt et al. 2020). More

recently, new variants affecting yield components have been identified and cloned; TaGW-

A2 has been characterized as a functional variant in a negative regulator of grain weight (Su

et al. 2011; Wang et al. 2018), while a major variant in floral developmental gene WAPO-A1

increases the number of spikelets per spike (Kuzay et al. 2019).

Variation in plant growth also impacts yield and its components. Major genes have been

identified that control adult plant height and heading date. The physiological effect of the

Rht genes, mutations in DELLA proteins that greatly reduce plant height, is conditional

on the environment and the quantity of assimilate produced by the cultivar. RhtD1 is

associated with larger kernel number but smaller kernel size and weight (Borner et al. 1993),

a trade-off related not to spike development but to the greater availability of assimilates

during grain-fill due to partitioning less biomass into stems (Youssefian et al. 1992). Semi-

dwarf wheat cultivars having either the Rht-D1a or Rht-B1a allele are widely cultivated, as

breeders generally select plants near some optimal height, because too-short plants have a

generally lower yield (Fischer and Quail 1990) and tall plants tend to lodge. Variation for

heading date generated by major-effect variants underlies the broad geographic distribution

of cultivated wheat. Heading date variation alters the duration plants spend in certain

developmental stages, which can impact developmental traits like kernel size and spikelet

number per spike (Vargas et al. 2007). Plants with a mean heading date outside of the

optimal range for a specific environment may expose themselves to early-season cold

stress, late-season heat stress, or drought stress at sensitive developmental stages. Previous

studies have demonstrated major effects of Vrn1 and Ppd1 alleles on final grain yield, often

in an environment-specific manner related to climatic conditions (Addison et al. 2016,

unpublished results). A variant may have a large effect on a single plant growth phenotype

that will translate into a smaller effect on yield component traits and, in turn, to yield

variation. For example, the insensitive allele at the major heading date gene Ppd-D1, alters
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expression of intermediates that up-regulate other genes in the flowering time pathway,

hastening the development of the shoot apical meristem which in turn reduces the number

of spikelets per head (Boden et al. 2015). Decreases in spikelet number may decrease spike

yield, depending on the relationships between yield components in a given environment.

Variation for these developmental traits then alters yield in an environment-specific manner.

Using QTL for the improvement of yield requires an understanding of how those QTL alter

yield. A “yield QTL” useful for MAS should alter yield components in a way that consistently

produces an increase in yield in the targeted environment without altering plant growth

over time.

The structural equation modeling (SEM) framework fits multivariate data to a network

structure that links variables via effects. Path analysis and SEM have been used in a variety

of fields (e.g. Wright 1920; Crespi and Bookstein 1989; Kaplan and Phillips 2006). In the

context of crop genetics, they can model the translation of sequence variation into yield

variation through intermediate phenotypes. SEM has been recently used to increase the

power of GWAS by incorporating information on multiple correlated traits (Momen et al.

2018, 2019). In wheat, SEM has been used within chromosome substitution lines to identify

QTL for yield via effects on grain number and weight (Dhungana et al. 2007; Mi et al. 2010).

At the same time, SEM has been used to show the importance of variation in plant growth

traits in generating variation in seed number, size, and yield in small numbers of genotypes

(Vargas et al. 2007). We chose to apply SEM in this study because, unlike standard multi-trait

models that assume direct effects of QTL on all traits, SEM allows linking QTL to spike yield

via a graph of intermediate phenotypes with a known structure to understand the basis of

changes in QTL effects on spike yield between environments.

In DeWitt et al. (2021), we characterized the genetic basis of heading date and plant

height in the LA-95135 x SS-MPV-57 biparental RIL population. These traits follow an

oligogenic architecture, with over 90% of additive genetic variation for heading date and

plant height associated with six QTL in most environments. Here we build off this prior work

to understand the relationship between these QTL and yield, characterize new QTL that are

associated with yield component traits but not heading date or plant height, and understand

the basis of their contribution to spike yield variation in an environment-specific manner.
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3.3 Materials and methods
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Figure 3.2: SEM QTL Mapping Model Steps in the QTL mapping model. The iteration for
QTL having effects on TKW, KL, and KW is shown.

3.3.1 Population Development and Phenotyping

A recombinant inbred lines (RIL) population developed from a cross between cultivars

SS-MPV57 (FFR555W/3/VA89-22-52/TYLER//REDCOAT*2/GAINES) and LA95135 (CL-

850643/PIONEER-2548//COKER-9877/3/FLORIDA -302/COKER-762) was used in this

study. The parents of the population were chosen to generate major additive genetic varia-

tion for plant height and flowering time and to characterize novel QTL for these traits. Parent

SS-MPV57 carries major earliness gene Ppd-D1a, but no major dwarfing genes, and parent

LA95135 caries major dwarfing gene Rht-D1a, but no major earliness genes. At the same

time, recently cloned major variants WAPO-A1, TaGW-A2, and B-A1 (Supplementary Table

1) segregate in this population, allowing for the investigation of their effects on different

yield components in a common background (Kuzay et al. 2019; Su et al. 2011; Wang et al.

2018; DeWitt et al. 2020). After crossing, F1 plants were selfed to generate a population of

F2 lines. Plants were advanced via the single-seed descent method until the F5 generation,

producing 358 RILs.

The LM RIL population was evaluated in the field at Raleigh, NC (RAL18) and Kinston,
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NC (KIN18) during the 2018 field season, and in 2019 at Raleigh (RAL19), Kinston (KIN19),

and Plains, GA (GA19). The 358 RILs were grown in an augmented block experiment with

three replications of the parents per block, and two replications of each RIL at each location.

Each of the five blocks consisted of 72 RIL entries, and plots consisted of 1-m rows spaced

30 cm apart. Plant height was collected as the height of the top of the spikes, excluding the

awns, of a sample of tillers from the center of each row,. Heading date of each row was noted

as the day of year when half of the heads had fully emerged from the flag leaf, typically a

few days before anthesis.

Grain yield in this study is treated as the product of kernel number and size (Figure 3.1).

Kernel size was collected as thousand kernel weight (TKW) and kernel size components

(kernel length, KL; kernel width, KW), while spikelet number per spike (SpS) and kernel

number per spikelet (KpS) were collected as components of kernel number. Six represen-

tative spikes from each row were harvested and number of spikelets recorded for all field

experiments. Seeds were weighed and counted to determine kernel weight. Rows at the

RAL18 location were hand harvested and threshed using a Vogel thresher. A 15 ml seed

sample was cleaned and grain morphometric parameters (kernel length, width, area and

weight) were obtained using a MARVIN grain analyzer (GAT Sensorik GMBH, Neubran-

denburg, Germany). Kernel morphometric parameters and total spike yield for the KIN18

experiment and all 2019 field experiments were obtained by sampling seed threshed from

the six-spike sample of each row using a scale and a Vibe QM3 grain analyzer (Vibe Image

Analytics Ltd., Capitola, CA). In all locations, SpS was calculated as the mean number of

fertile spikelets on the sampled wheat spikes.

3.3.2 Analysis of Phenotypes

For QTL mapping, values for each genotype were calculated for each combination of

phenotype and environment as best linear unbiased estimates (BLUEs). To correct for

effects related to plants’ physical positions within a field, the software Echidna (Gilmour

2018) was used to calculate BLUEs with an AR1xAR1 spatial adjustment model:

yi ∼µ+Gi +ui + ei
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Where yi is the observed phenotype for an individual row, µ is the intercept, Gi is the

fixed effect of genotype, and ui is the unit or "nugget" random effect for each observation

representing the component of the variance associated with sampling or other uncorrelated

error drawn from a distribution u ∼ i i d N (0,σ2
e ), and ei is the spatially-correlated residual

drawn from the distribution e ∼ N (0,σ2
eΣr (ρr ) ⊗Σc (ρc )), whose variance is the direct

product of an rxr auto-correlation matrix Σr (ρr ) representing rows and a cxc correlation

matrix Σc (ρc ) representing columns. For structural equation modelling, phenotypes were

centered and scaled to a mean of zero and standard deviation of one.

3.3.3 Network Modeling

The structure of the conceptual yield component model (Figure 3.1) was extended to esti-

mate allele effects of QTL on spike yield as the product of effects on component phenotypes

by fitting a Structural Equation Model using the R package lavaan (Figure 3.2). In this model,

a QTL effect on spike yield is the sum of the products of effects on the base yield components

(KL, KW, KpS, SpS) and the mediated effects of the QTL on downstream phenotypes via

the base phenotypes. Correlation coefficients between linked variables are taken as causal

effects of variables on other variables using prior knowledge of the relationships between

phenotypes. This model was extended with information on phenotypes that may affect

yield components – plant height, heading date, and leaf rust severity – to generate a graph

relating QTL affecting these traits to spike yield through a set of intermediate phenotypes

(Figure 3.2).

The effects of QTL on traits and the effect of traits on each other were estimated by fitting

the graph in each environment in lavaan. Yield component traits were allowed to have

effects on the other yield components that were set later in plant development (for example,

altered values of spikelets per spike (SPS) can affect kernel length (KL), but not vice-versa).

The total allele effect of a QTL on spike yield was calculated using path analysis, multiplying

the effects of the QTL on associated phenotypes by the effects of those phenotypes on

subsequent phenotypes, and summing all paths.
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3.3.4 QTL Mapping

A linkage map was constructed from GBS and KASP markers as described in DeWitt et al.

(2021). QTL mapping of plant height and heading date genes was performed as described

previously using the R package r/QTL (Broman et al. 2003). Composite interval mapping

was used for initial QTL identification, and intervals were narrowed using a multiple QTL

model (MQM) as implemented in the refineqtl() function. The addqtl() function was used

to identify additional QTL using identified QTL as covariates. Significance thresholds for an

α= 0.05 were determined using 1000 permutations of a given test.

Given the degree of correlation between our phenotypes, most identified yield QTL

are expected to have pleiotropic effects on more than one yield component trait. Thus,

a multivariate model that included components was expected to have more power to

detect a QTL for spike yield than a traditional QTL model. In addition, to identify yield

component QTL that are not heading date or plant height QTL with mediated effects on

yield components, those phenotypes should be considered as covariates in the analysis.

We implemented a network mapping approach to account for the observation that each

specific QTL does not have pleiotropic effects on all phenotypes, but affect different subsets

of traits. To model the existence of "per-se" yield component QTL the effect of markers in a

network model was tested directly using the following steps:

1. Specify a prior graph featuring effects of known genes on phenotypes, and relation-

ships between phenotypes (Figure 2, panel 1).

2. Test each combination of base yield component phenotypes, starting with the maxi-

mal case of all five, and moving to each combination of four, then each combination

of three, and so on. For each set of phenotypes:

3. Only consider the variables in the graph that affect the current set of phenotypes

under consideration (Figure 2, panel 2).

4. Generate 1000 random permutations of the genotype data (Figure 2, panel 3). For

each permutation:

(a) For each permuted marker, compute the likelihood of the null model of no effect

of the tested marker on the base yield components using the sem() function in

lavaan. Compute the likelihood of the alternative model of an effect of the tested
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marker on the base yield components, and take the difference as a log of odds

(LOD) score.

(b) Return the LOD value of the permuted marker with the largest LOD score as

representing the iteration.

5. Order the vector of maximum LOD values and take the 95th percentile value as a

conservative empirical significance threshold at α = .05.

6. For each non-permuted marker, compute and compare the likelihoods of alternative

and null models using the sem() function in lavaan. Take the model with the highest

LOD score as an updated model for that set of phenotypes (Figure 4 panel 4).

7. Refit the model with the added marker and remove any non-significant paths between

the new marker and phenotypes (Figure 2, panel 5)

8. Remove any other paths that have become non-significant because of addition of

new variables.

9. Repeat steps a-f until no further markers pass the LOD threshold (Figure 2, panels

6-7).

10. Replace the sections of the full graph considered in the current iteration with the

updated subgraph containing any new QTL and their relationships to phenotypes

(Figure 2, panel 8).

Genotype permutations were performed with the sim.geno() function in r/QTL. Number

of QTL used in significance threshold testing was limited to 8 to prevent over-fitting of the

model and maintain a conservative significance threshold, and mapped QTL within 2 cM of

an existing QTL were treated as the same QTL affecting different phenotypes. The procedure

was repeated separately for each environment. In the Plains 2019 environment where plant

height was not collected, plant height was modeled as a latent variable measured by the

plant height variables collected in the other four environments. The final model for each

environment was fit using the sem() function in lavaan to estimate coefficients for path

analysis of the effects of individual QTL on spike yield and its components.
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3.3.5 Variance and Path Analysis

To assess the relative importance of mapped QTL in generating additive genetic variation

in collected phenotypes, variance analysis was performed in the R package lme4qtl, which

allows for the fitting of random effects with supplied covariance matrices (Ziyatdinov et al.

2018). For known variants for which KASP marker genotypes of the causal polymorphisms

were available, the genotypes were used directly, and for novel QTL genotype probabilities

from the refineqtl object were used. For testing QTL, alleles were encoded in terms of the

allele dosage of the LA95135 allele (0, 1, 2) without estimating a dominance effect.

For each environment and phenotype, QTL effects and variance components for both

the additive and non-additive effects of genotypes were specified with the mixed model:

Yi k ∼
n
∑

h=1

Qi h + gAi + gE i + ei k

Where for each phenotype Y of genotype i in row k, fixed effects for each QTL h were

fit as regressions of allele dosage on phenotypes. The term gAi represents the the random

additive effect of genotype i with a variance specified by the realized relationship matrix

(gA ∼N (0, Gσ2
g )), calculated from the scaled GBS marker matrix (G= W′W

c , where W is the

scaled marker matrix and c is a normalization value calculated from marker frequencies).

The term g I i represents the non-additive random effect of genotype i with an independent

variance (g I ∼N (0, Iσ2
g )).

A modified method from Nakagawa and Schielzeth (2013) used in DeWitt et al. (2021)

was used to estimate variances associated with QTL and variance components from the

specified model. Variances associated with fixed effects in a mixed linear model were

estimated by multiplying the vector of values for an effect by its estimated effects and

taking the variance of the vector (σ2
f i x e d = V a r (

n
∑

h=1
βh xhk ) for coefficients and effects h

and observations k). Linked QTL Ppd-D1 and Rht8 were treated as a single locus to satisfy

assumptions of independence between variables, using the mean genotype probabilities

of the two QTL.

The above model was modified to estimate variance components of spike yield by

collectively estimating two additional random genotype effects associated with yield com-
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ponents and plant growth (heading date and plant height) QTL. Relationship matrices were

calculated as above except that genotypes for plant height and heading date QTL were used

to calculate a relationship matrix to estimate the variance associated with plant growth

QTL, and genotypes for yield component traits identified using the SEM model were used

to calculate a relationship matrix to estimate variance associated with yield component

QTL. To verify that this model was appropriately partitioning variation, 100 iterations of a

null model were run in which the same number of randomly sampled genome-wide SNP

were used to construct the plant growth and yield component relationship matrices.

3.4 Results and discussion

3.4.1 Initial QTL Identification

To investigate the genetic architecture of SPS and TKW in this population, single-trait

QTL mapping was performed in the RAL18 and KIN18 environments. Twelve QTL were

significantly associated (LOD > 3.54) with SpS, and 8 QTL were significantly associated

(LOD > 3.46) with TKW. Based on peak markers and confidence intervals, multiple QTL

(Table 3.1) co-located with loci that were previously determined to affect plant height and

heading date in the population (DeWitt et al. 2021). The Rht-D1b dwarfing allele was the

major QTL for TKW and in KIN18 had a positive effect on SpS. Photoperiod insensitivity

gene Ppd-D1a decreased SpS in both environments. Previously identified earliness variants

on chromosomes 3A and 5A (Qncb.HD-3A, Qncb.HD-5A) were co-located with QTL for

fewer SPS, and a variant in Vrn-A3 affecting heading date is co-located with a QTL for TKW

on the short arm of chromosome 7A.

Recently characterized variants in wheat genes Tb-B1, B-A1, WAPO-A1, and TaGW-A2

were predicted to segregate based on KASP marker genotypes of the parents (Supplemen-

tary Table 1). Yield component QTL were mapped near each of these genes. For example,

predictive marker for the B-A1 locus determining presence or absence of awns on the spike

was the peak marker for TKW and SpS on the long arm of chromosome 5A (Table 3.1). In

addition, a predictive marker for Lr9 conferring resistance to leaf rust (caused by Puccinia

triticina) was significant also for both TKW and SpS at KIN18, where plants were affected

by a naturally occurring leaf rust epidemic. Beyond these known variants, QTL affecting
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Table 3.1: Significant Yield Component QTL Information from Best Environment. Data
on thousand kernel weight (TKW) and spikelets-per-spike (SPS) were collected in Raleigh
and Kinston in 2018. For QTL significant in two environments, the effects, LOD score,
and confidence interval from the most significant environment are displayed. QTL for
other phenotypes mapped near the confidence interval for a trait are given. Many QTL are
mapped in the same regions as QTL for plant height (PH) and heading date (HD). QTLs
mapped in the same region for both SPS and TKW increase one while decreasing the other.

SpS:
Chr. Gene Peak Marker Position CI LOD

2A S2A_223722835 79-661 Mb 5.89
2B S2B_612673903 147-654 Mb 3.88
2D Ppd-D1 Ppd-D1 32-44 Mb 15.07
3A S3A_609909640 485-621 Mb 4.64
3D S3D_476608044 434-549 Mb 3.58
4B Tb-B1 S4B_416305737 52-620 Mb 3.71
4D Rht-D1 Rht-D1 0-35 Mb 12.1
5A.1 S5A_480804629 480-494 Mb 8.62
5A.2 B-A1 B1 698-703 Mb 12.9
6B LR9 LR9 701-721 Mb 6.45
6D S6D_250410640 55-323 Mb 4.22
7A WAPO-A1 S7A_673096342 672-675 Mb 23.46

TKW:
Chr. Gene Peak Marker Position CI LOD

3D S3D_496955493 477-530 Mb 3.58
4D Rht-D1 Rht-D1 0-35 Mb 37.76
5A.1 S5A_439551041 331-455 Mb 6.77
5A.2 B-A1 B1 698-702 Mb 5.59
6A TaGW-A2 S6A_355433083 97-509 Mb 5.81
6B LR9 LR9 701-721 Mb 11.42
7A.1 VRN-A3 S7A_66220298 58-77 Mb 4.75
7A.2 S7A_149426090 128-516 Mb 5.51

SPS were identified on chromosomes 2A, 2B, 3D, and 6D, and a QTL on chromosome 7A

was identified for TKW (Table 3.1).

Of the 20 QTL, seven were significant in both locations (Table 3.1); however, the relative

proportion of additive genetic variation associated with QTL varied between locations

(Figure 3.3). No individual QTL increased both SPS and TKW, but in some the magnitude of
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the negative effect on one phenotype was much smaller than the magnitude of the positive

effect on the other.
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Figure 3.3: Additive genetic variation associated with yield component QTL. Additive
genetic variation for phenotypes collected in Raleigh and Kinstson in the 2018 field sea-
son (PH; plant height, HD; heading date, SPS; spikelets-per-spike, TKW; thousand kernel
weight)is partitioned into components associated with mapped SPS and TKW QTL and
all other QTL (polygenic effect). QTL that have a positive effect on SPS generally have a
negative effect on TKW, and vice versa.

3.4.2 Network Mapping of Yield Component QTL Using SEM

During 2019, data was collected for correlated morphometric traits KpS, KL, and KW in

addition to SpS and TKW (Supplementary figure 1). Considering the analysis of the yield

components in 2018, a SEM was fit that utilized plant height and heading date in each

environment to control for effect of plant growth genes on spike yield and allowed QTL to
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alter multiple yield component traits pleiotropically. In KIN19 and GA19, where leaf rust was

observed and individual plots scored for disease severity, leaf rust score was added in as an

additional variable. The network mapping model identified 53 QTL in KIN19 (Supplemental

Figure 2, Figure 3.4), 62 QTL in RAL19, and 57 QTL in GA19 (Supplementary Table 3). In

this model, QTL for TKW and SpS co-located with plant height or heading date loci were

generally not detected. The exceptions were Rht-D1 and Ppd-D1, suggesting they may have

both direct and indirect effects on yield components. All other QTL identified for TKW and

SpS in 2018 were identified by the model at one or more locations in 2019.
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Figure 3.4: Mapped QTL across locations QTL added to the model for any combination
of traits, plotted by genetic position across all three subgenomes. QTL associated with a
known gene are highlighted in red, whereas novel QTL are in blue.
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3.4.3 Path Analysis of Phenotypes

Correlations between phenotypes may arise due to underlying genes with pleiotropic

effects, linkage between loci, or causal relationships between traits. The correlation between

heading date and plant height was insignificant (p > .05) after including the effects of QTL

affecting both traits, implying that the correlation of unadjusted phenotypes resulted

from pleiotropic effects or close linkage between underlying genes (ie. Ppd-D1 and Rht8).

Compensation is often observed in wheat, resulting in negative correlations between base

yield component phenotypes KL, KW, KpS, and SpS. While these negative correlations can

arise due to pleiotropic effects of the underlying genes, they may also result from source

limitations. For example, in an environment or genetic background where carbohydrate

availability limits grain yield, increasing the number of spikelets per spike may decrease the

numbers of kernels per spikelets, and increasing kernel number may reduce mean kernel

size.

Structural equation models allow for the estimating the mediating effects and allow

analysis of these relationships for individual loci. Loci identified by network mapping of

QTL were fit in a full SEM for two locations where all developmental and yield component

traits were evaluated (RAL19 and KIN19) to estimate phenotypic relationships after cor-

recting for direct QTL effects (Figure 3.5). As yield component traits are plastic at different

developmental stages, only effects of base yield component traits on subsequently devel-

oping traits were estimated. For example, increasing SPS may decrease kernel size but not

vice versa, as spikelet number is set prior to grain fill. As kernel density was not directly

measured in this experiment, plant growth phenotypes and mapped QTL were allowed to

affect TKW directly.

Generally positive relationships of similar effect were observed between kernel mea-

surements (KL, KW, TKW) and SY in both environments, with larger kernels contributing

positively to SY, particularly at KIN19 (Figure 3.5). As expected, there were also strong pos-

itive relationships between yield components KN and TKW and their sub-components.

Comparison of the estimated graphs indicated differences in the relationships between

developmental traits and base yield components at each environment. At RAL19, there

was little evidence for source limitation, although a slight negative effect of increasing

spikelets per spike on kernel width was observed. In comparison, the KIN19 environment

appeared more source-limited, with negative relationships between SpS and KpS, and
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strong negative effects of increasing kernel number on kernel size components KL and KW

(Figure 3.5). Consistent with the understood physiology of spike development, increasing

heading date increased the number of spikelets per spike in both locations. Later heading

was also associated with increased KW at RAL19. However, a slight decrease in KW was

observed at KIN19 where plants experienced higher temperatures during grain fill. In addi-

tion, decreasing plant height was associated with increasing KpS at KIN19. These effects

were consistent with the appearance of source constraints in Kinston as suggested by the

negative relationships between base yield components. Increased leaf rust severity (RS)

decreased KW and KL, but had a slightly positive effect on KpS. Taken together, this analysis

indicates that variability in relationships among phenotypes across environments provided

a mechanism for QTL to have environment specific effects on spike yield, even while having

consistent direct effects on the primary phenotype.

3.4.4 Genetic architecture of spike yield

Additive genetic variation in spike yield and its components was largely associated with

identified QTL, but the relative importance of those QTL varied from across environments

(Figure 3.6). When the yield component or plant height relationship matrices were popu-

lated with random markers instead of genotypes for identified QTL they did not capture

variance for the phenotypes. The QTL with the overall largest contribution to additive

genetic variation was Rht-D1. At RAL19 and GA19, Rht-D1 explained with XX% of additive

genetic variation in SY, was primarily associated with TKW and explained little additive

genetic variation in KN. In contrast, at KIN19 Rht-D1 was associated with 54.6% of additive

genetic variation for TKW and 34.0% for KN, and 67.7% of additive genetic variation in

spike yield. This is consistent with the large effect of plant height on both KW and KpS at

KIN19 observed in the path analysis (Figure 3.5).

Resistance gene Lr9 showed a pattern of environment-specific expression consistent

with the presence of disease. Leaf rust pressure was highest at GA19 where Lr9 was asso-

ciated with 34.8% of additive genetic variation in SY, moderate at KIN19 where Lr9 was

associated with 5.6% of variation, and absent at RAL19 where the locus explained 1.6% of

variation.

None of the per-se yield components had effects comparable to Rht-D1 on spike yield in
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Figure 3.5: Phenotype graph for Raleigh and Kinston 2019. Inter-phenotype coefficients
for full SEM model (including QTL effects which are not shown) fit in Raleigh and Kinston
2019. Thickness of paths demonstrate standardized effect size, while color indicates direc-
tion of effect. Leaf rust score (RS) is shown in Kinston but not Raleigh, where no pathogen
affected plants. Negative correlations between yield components in Kinston after correcting
for genetic effects suggests environment-specific source constraints.

any location and relative importance of other loci varied. All yield QTL together explained

more than a third of additive genetic variation in SY at RAL19. Although B1 explained a

substantial portion of additive genetic variation in negatively correlated traits TKW and KN

in this environment, it was associated with almost no additive genetic variation in SY. The

B1 awn suppressor explained a substantial proportion of additive genetic variation for SY

at GA19 at KIN19, but very little for KN (Fig. 9). Interestingly, WAPO-A1 was associated with

8.0% of additive genetic variation for SY at KIN19 and almost no additive genetic variation

for SY at RAL19 and GA19. The differential importance of QTL in different environments

suggests that the magnitudes of QTL effects on spike yield change from environment to
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Figure 3.6: Spike yield additive genetic variance components Partitioning of additive
genetic variance associated with different subsets of marker genotypes. The genetic ar-
chitecture of spike yield changes dramatically from environment to environment, with a
relationship to the genetic architecture of component traits TKW (thousand kernel weight)
and KN (kernel number).

environment through both differential effects on the yield components themselves and

altered relationships between yield components.

The small proportion of additive genetic variation associated with the polygenic back-

ground across environments validates the ability of the mapping model to identify the loci

generating yield component variation within each environment. The polygenic effect was

largest at GA19, explaining over 15% of variation, but less than 5% at RAL19 and KIN19. The

combined contribution of all other identified plant growth and yield component QTL was

small for GA19 and KIN19. In contrast, at RAL19 2.7% of the additive genetic variance was

associated with these yield component QTL, and 15.7% with plant growth QTL.

3.4.5 Major plant height and heading date allele effects

Differences in the relative importance of individual loci and categories of loci were examined

in-depth using path analysis in the full network model. Rht-D1 explained a substantial

portion of additive genetic variation in all environments but dominated total additive

genetic variation in KIN19. To understand the mechanism by which the Rht-D1 effect
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differed between RAL19 and KIN19, predicted allele effects on spike yield were estimated

via path analysis starting with the estimated QTL effects of Rht-D1 in both environments

(Figure 3.7). In both environments, the Rht-D1a allele has a slight positive effect on heading

date, but strong negative effects on plant height and kernel width. Rht-D1a reduces growth

by preventing the degradation of the DELLA protein it alters, rendering plants insensitive

to gibberellic acid (Peng et al. 1999). This affects the growth of cells in developing kernels

and the elongating stem tissue (Keyes et al. 1990). Rht-D1a was associated with an increase

in heading date in both environments, contributing to slight increases in SpS and KN.

Reduced plant height due to Rht-D1a at KIN19 also contributed to increased KpS and

further increased KN. In RAL19, a small negative effect of plant height on KW resulted

from the direct negative effect of Rht-D1a on this trait. In KIN19, a stronger association

between plant height and KW was observed along with a larger effect of Rht-D1 on plant

height; decreased KW in this environment result from both the direct effect of Rht-D1a

and the indirect effect mediated by plant height and KpS. While Rht-D1a was associated

with decreased TKW in both environments, the effect in KIN19 was larger in part due to a

stronger effect of plant height on KW. In addition, the decrease in thousand kernel weight

had a larger negative effect on spike yield in KIN19 than in RAL19, so that Rht-D1 explained

a larger proportion of additive genetic variation in yield in the KIN19 environment. Thus,

the specific Rht-D1 by environment interactions were due to both differential effects of

Rht-D1 on plant height and KW in the two environments, as well as different relationships

between phenotypes in the two separate environments.

3.4.6 Major per-se yield component allele effects

Allele coefficients and relationships between yield component phenotypes were used to

investigate allele effects across the whole set of yield components in each environment

(Figure 3.8). While the direction of effects on base yield component phenotypes remains

constant, effect sizes often change between environments. Additional changes in the effect

from environment to the environment is produced by altered relationship between pheno-

types. B1 has a much larger estimated effect in KIN19 than in RAL19, tracking with its much

greater importance for determining spike yield in that environment. At the same time, B1

generates major variation in both TKW (thousand kernel weight) and KN (kernel number)

in RAL19. The presence of awns is associated with increases in kernel weight and decreases

in KN in both environments due to the positive effects on kernel density and length. At
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Figure 3.7: Phenotype graph for Rht-D1 allele effects. Inter-phenotype coefficients for
full SEM model (including QTL effects which are not shown) fit in Raleigh and Kinston 2019.
Thickness of paths demonstrate standardized effect size, while color indicates direction of
effect. Leaf rust score (RS) is shown in Kinston but not Raleigh, where no pathogen affected
plants. Negative correlations between yield components in Kinston after correcting for
genetic effects suggests environment-specific source constraints.

KIN19 the increase in kernel weight was larger than the decrease in KN, leading to a major

positive effect on spike yield. However, at RAL19, the contrasting effects on component

traits are similar and produce almost no spike yield effect. The presence of awns was also

associated with a positive SY effect in GA19, with a smaller positive effect on TKW than in

KIN19, but no negative effect on KN.

WAPO-A1, a recently identified gene involved in determining the number of spikelets per

spike, was the largest per-se QTL for SpS in the LM population. If WAPO-A1 can consistently

increase yield by increasing KN without altering kernel size, MAS may be used to increase
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Figure 3.8: Allele effects of major yield component QTL QTL models fit in each environ-
ment (columns) were used to estimate significant (p < 0.10) allele effects for previously
mapped QTL on multiple base scaled yield component phenotypes, as well as effects on
TKW (thousand kernel weight) presumed to be mediated by their effects on test weight
(kernel density). Effects of those allele effects on base phenotypes on additional phenotypes
are estimated by path analysis using the estimated model, by the multiplication of the sum
of effects on a phenotype by that phenotypes standardized effect on other phenotypes.
Many QTL generate substantial effects on yield components and little effect on spike yield,
due to contrasting effects on component phenotypes. QTL effects vary significantly by
environment, but only in magnitude and not in effect direction.

102



yield by increasing the frequency of WAPO-A1a in breeding populations. However, the

only environment where the increased SPS allele is associated with an increase in spike

yield is GA19 (Figure 3.8). The WAPO-A1 allele from LA95135 has a significant negative

effect on SpS and is also associated with an increase in KpS and kernel density in RAL19

and KIN19, and an increase in KW in KIN19. An increase in kernel size associated with

the decreased SpS allele also emerges because of the negative effect of SpS on KW in both

environments. The effect at KIN19 on spike yield is greater, where decreasing SpS increases

KpS, leading to a minor increase in both KN and a larger increase in kernel weight for the

lower SpS allele. Increasing yield by increasing spikelet number through MAS for WAPO-A1

will necessitate understanding the environmental conditions that lead to these altered

relationships. The TaGW-A2 gene is a negative grain size regulator. The LA95135 allele of a

SNP polymorphism in the promoter region segregating in the population was associated

with an increase in spike yield at RAL19 and GA19 but a slight decrease at KIN19 (Figure 3.8).

In all environments the LA95135 allele is associated with increased TKW due to positive

effects on KL and KW, and also with a decrease in KN. At RAL19 this decrease in KN resulted

from a decrease in SPS, and at KIN19 with a decrease in KPS. In both cases, the decrease

in KN is associated with an increase in TKW. The total negative effect of the increased KW

allele on SY in KIN19 results from a relatively larger decreases in KN compared to the other

two environments, where it is associated with an overall increase in SY.

The LA95135 allele of a QTL mapped to the centromeric region of chromosome 3B is

associated with decreases in both kernel size and SpS at RAL19 and GA19. The LA95135

allele of Qncb-3B decreases KL and SpS in all environments, but is associated with increases

in KpS at KIN19. This allele has a major negative effect on spike yield in RAL19 and GA19, as

it decreased both TKW and KN. At KIN19, an increase in KpS contributed to a comparatively

smaller negative effect on spike yield despite similar effects on KL and SpS. The QTL having

effects in the same direction on both kernel size and number is further evidence that the

pleiotropy observed for per-se yield component QTL in this study is not arising solely from

source constraints.

Qncb-3D is the major per-se KL QTL in this population, increasing KL with smaller

negative effects on KpS and SpS. In all environments, effects on spike yield are small and

the QTL is associated with almost no additive genetic variation. Small positive or negative

estimated effects of the allele result from contrasting positive effects on TKW and negative

effects on KN.
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3.5 Conclusions

Modeling the relationships between genotypes and phenotypes using SEM can help us

understand the mechanisms behind observed marker-trait associations for yield, and their

relative utility in marker-assisted selection. In all cases, the relative importance of a QTL in

generation variation in spike yield relates to its predicted effect on spike yield as calculated

by allele effects on base components and relationships between yield component pheno-

types. Dissection of environment-specific spike yield effects demonstrates that variation in

these effects emerges in part from altered allele effects on base yield components (most

importantly, the presence or absence of an effect on a specific trait) as well as altered rela-

tionships between phenotypes in different environments. The different pleiotropic effects

of major yield component QTL on base yield components suggests that these different QTL

are affecting base yield components through different genetic pathways or physiological

relationships. RNA-sequencing and careful tracking of plant physiology in NILs contrasting

for these major QTL may yield insights into how differences in sequence variation alter

base yield components in environmentally specific ways.

We found no evidence in this study for the presence of QTL that consistently alter spike

yield without altering plant phenology. Identified QTL are collectively associated with nearly

all of the additive genetic variation in spike yield within each environment. However, the

relative effects of QTL in each environment on spike yield, and therefore their relative

contribution to yield variation, change in magnitude from environment to environment.

Genomic selection models trained in these populations are then not averaging together

QTL effects that vary from one location to the next due to error variation in effect estimates,

but a combination of error variation and real differential expression of QTL. As the direction

of QTL effects largely remained the same within these environments, these models still

produce useful results – but suggests that there is room for improvement through an

understanding and modeling of effect variation. There is no simple relationship between

any identified QTL and spike yield. To truly make use of major genes in understanding and

predicting yield, the underlying environmental factors altering differential QTL expression

must be identified and explicitly modeled. Structural equation modeling and network

analyses similar to those utilized in this study may be one framework in which to do so.
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3.6 Data availability

Genotype and phenotype data for the biparental population is available in Supplemental

files on figshare. Code used to perform QTL mapping using SEM can be found on Github

(https://github.com/noahddewitt/SEM_QTL).
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4.1 Abstract

Awns are stiff, hair-like structures which grow from the lemmas of wheat (Triticum aestivum

L.) and other grasses that contribute to photosynthesis and play a role in seed dispersal.

Variation in awn length in domesticated wheat is primarily controlled by three major

genes, most commonly the dominant awn suppressor Tipped1 (B1). This study identifies a

transcription repressor responsible for awn inhibition at the B1 locus. Association mapping

was combined with analysis in bi-parental populations to delimit B1 to a distal region of

5AL co-localized with QTL for number of spikelets per spike, kernel weight, kernel length,

and test weight. Fine-mapping located B1 to a region containing only two predicted genes,

including C2H2 zinc finger transcriptional repressor TraesCS5A02G542800 up-regulated

in developing spikes of awnless individuals. Deletions encompassing this candidate gene

were present in awned mutants of an awnless wheat. Sequence polymorphisms in the B1

coding region were not observed in diverse wheat germplasm while a nearby polymorphism

was highly predictive of awn suppression. Up-regulation of the B1 repressor is the major

determinant of awn suppression in global wheat germplasm. It is associated with increased

number of spikelets per spike and decreased kernel size.

4.2 Introduction

Awns are stiff, hair-like structures common in grass inflorescences. In Poaceae, awns emerge

from the lemma of young spikelets at an early developmental stage. Awns are important

for seed dispersal in wild relatives of wheat with a brittle rachis; spikelets attach to passing

animals via barbs lining the awns. In addition, awns balance spikelets as they fall, and their

expansion and contraction in response to changes in humidity drives them into the soil

(Elbaum et al. 2007). Awns may also deter herbivores from ingesting heads (Grundbacher

1963), making awn suppression important for developing forage cultivars (Cash et al. 2009).

The absence of awns in rice is considered a key domestication trait facilitating grain harvest

and storage (Toriba and Hirano 2014), but the history of the evolution and spread of awn

suppression in domesticated wheat is not well understood.

Major variation for awn length in domesticated wheats emerge from different combina-

tions of three dominant genes: B1 (Tipped 1), B2 (Tipped 2) and Hd (Hooded) (McIntosh et
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al., 2013). On its own, the B1 awn suppressor produces an apically awnletted phenotype,

characterized by short awns at the end of the spike and absent elsewhere (Watkins and

Ellerton 1940). The B2 allele reduces awn length most dramatically towards the top and

bottom of the wheat spike, while the Hd allele reduces awn length consistently and can

produce curved, “hooked” awns (Watkins and Ellerton 1940). Combination of these genes

produces a nearly awnless or completely awnless phenotype (Yoshioka et al. 2017). None of

the genes controlling awn length in wheat have been cloned, but mapping studies place

Hd and B2 on the short arm of chromosome 4A and the long arm of chromosome 6B,

respectively (Sourdille et al. 2002; Yoshioka et al. 2017). The B1 locus has a long history

as a physical marker, and is located distal to the major genes controlling vernalization

requirement (VRN-A1) and the spelt head type (Q) on 5AL (Kato et al. 1998). Recent fine

mapping has narrowed the B1 region to a 7.5 cM interval on the distal end of 5AL closely

linked to marker BW8226_227 (Mackay et al. 2014). In Aegilops tauschii, the donor of the

D-genome in hexaploid wheat, an additional dominant awn suppressor Anathera (Antr)

was located distally on 5DS (Nishijima et al. 2018). Deletion of the short arm of chromo-

some 3B in Chinese Spring also produces an awned phenotype, suggesting that further

uncharacterized genes are involved in awn development (Ma et al. 2012).

Awn suppression in barley is controlled by two major genes: the homeobox gene Knox3

(Müller et al., 1995) underlying the Hooded (K ) locus that replaces awns with sterile flowers,

and a SHORT INTERNODES transcription factor (Yuo et al., 2012) underlying the short awn

2 (lks2) locus (Roig et al., 2004, Takahashi 1955). In rice awn suppression is an important

domestication trait, and is derived from mutations in genes involved in awn development:

a helix-loop-helix protein I (An-1), an auxin response factor I, a YABBY transcription factor

DROOPING LEAF (DL), LONG AND BARBED AWN (LABA1) involved in cytokinin biosynthe-

sis, and an EPIDERMAL PATTERNING FACTOR-LIKE 1 (EPFL1) gene REGULATOR OF AWN

ELONGATION 2 (RAE2) or GRAIN NUMBER, GRAIN LENGTH AND AWN DEVELOPMENT1

(GAD1) (Bessho-Uehara et al., 2016, Hua et al., 2015, Jin et al., 2016, Luo et al., 2013, Toriba

& Horina 2013). However, awn suppression in wheat does not appear to be related to these

genes (Yoshioka et al., 2017).

Variation in awn length across modern wheat cultivars and landraces suggests awns are

variably adaptive in different environments. Previous studies support a role for awns in

supplying photosynthate to developing grain of wheat and barley (Grundbacher 1963; Kjack

and Witters 1974; Motzo and Giunta 2002; Li et al. 2006; Tambussi et al. 2007; Amjad Ali
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et al. 2010; Maydup et al. 2014), and the location of awns on the wheat head facilitates

movement of carbohydrates into kernels and positions them favorably for photosynthesis

(Amjad Ali et al. 2010; Evans et al. 1972; Li et al. 2006). Awns may continue contributing to

photosynthesis if leaves senesce early or are damaged by disease or drought (Tambussi et al.

2007), and the absence of awns can halve the rate of net ear photosynthesis (Evans et al.

1972). Awn tissue, potentially due to its silica coating, tolerates water deficit better than

other important photosynthetic tissues such as the flag leaf (Tambussi et al. 2005; Peleg

et al. 2010). Besides increased area for photosynthesis, in warmer climates awns can play a

role in cooling the wheat spike during grain fill (Motzo and Giunta 2002). Awned wheats

have been demonstrated to perform better in hotter climates or under water stress. The

presence of awns is associated with smaller numbers of larger kernels (Rebetzke et al. 2016).

Similarly in rice, wild type awned plants have larger kernels with a reduced number per

panicle when compared to awnless GAD1 mutants (Jin et al. 2016).

Awnless or awnletted wheats are widely cultivated and are the dominant morphology

in many parts of the world. Potential explanations for the prevalence of awn inhibited

types is their association with a reduced incidence of pre-harvest sprouting (Cao et al.

2016; King and Richards 1984), use of wheat as forage, and historical ease of harvest. In

warm growing regions like the southeastern U.S. where awnless varieties are historically

dominant, the proportion of awned varieties has increased over the past two decades. Given

the importance of awn status in selection of cultivars for local adaptation and end use,

and the influence of awns on spike and kernel morphology, a better understanding of the

genetic basis of awn suppression should also improve our understanding of these processes.

In this study, we investigated the relationship of awn suppression with kernel quality and

spike morphology in association and bi-parental mapping populations. Fine-mapping was

combined with analysis of mutant lines and gene expression to identify a candidate gene

responsible for awn suppression at the B1 locus. Our companion paper Huang et al. (2020)

presents parallel identification of B1, and through transcriptome analyses of awnletted B1

over-expressing plants they propose possible pathways through which B1 may act for awn

inhibition.
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4.3 Materials and Methods

4.3.1 Genome Wide Association Analysis

An association mapping panel of 640 elite soft winter wheat breeding lines was grown in

two replications as 1 m rows spaced 30 cm apart at Raleigh, North Carolina during the

2016-2017 growing season. At heading, presence or absence of a fully awned phenotype was

noted. These lines were entries in collaborative yield testing nurseries in the southeast soft

wheat growing region of the United States, the Gulf Atlantic Wheat Nursery (GAWN) and

the SunWheat Nursery, over a period of nine growing seasons. Association analyses were

performed for grain yield and test weight using historical data available for the 640 entries.

The GAWN and SunWheat yield trials were evaluated at one location in up to seven states

from 2008 to 2016: Arkansas (Stuttgart or Marianna), Florida (Citra or Quincy), Georgia

(Plains), Louisiana (Winnsboro), North Carolina (Kinston), Texas (Farmersville) and Virginia

(Warsaw). Experimental designs at each environment were randomized complete block

designs with one to three replications. Plot size was typical of yield trial plots for wheat

in the region at a minimum of 1.3 m wide and 3.1 m long. The data set was balanced for

individual years, where the same set of genotypes was evaluated across different locations,

and unbalanced between different years. Mixed model analyses of grain yield and test

weight data were performed as described in Sarinelli et al. (2019), except that the dataset in

the present study was expanded to include the SunWheat nursery. Best linear unbiased

estimates (BLUEs) of each genotype were calculated as the estimated genotypic effect plus

overall mean and used as the response variable for association mapping.

Genotyping by sequencing (GBS; Elshire et al. (2011)) was performed according to

Poland et al. (2012), with ninety-six individual samples barcoded, pooled into a single library,

and sequenced on an Illumina HiSeq 2500. Tassel5GBSv2 pipeline version 5.2.35 (Glaubitz

et al. 2014) was used to align raw reads to the International Wheat Genome Sequenc-

ing Consortium (IWGSC) RefSeqv1.0 assembly (https://wheat-urgi.versailles.inra.fr/Seq-

Repository/Assemblies) using Burrows-Wheeler aligner (BWA) version 0.7.12 and call SNPs

Li et al. (2009). SNPs were filtered to retain samples with ≤ 20 percent missing data, ≥ 5

percent minor allele frequency and ≤ 10 percent of heterozygous calls per marker. Missing

SNPs were imputed using Beagle (Browning & Browning, 2016).

GWAS for awn status, grain yield and test weight were conducted in R version 3.3.1
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(R Core Team 2016) using the GAPIT package (Lipka et al. 2012). Population structure

and relatedness between individuals were accounted for using the first three principal

components of the genomic relationship matrix, determined using the GBS markers and the

prcomp function in R version 3.3.1 (R Core Team 2016). Markers were declared significant

based on the Bonferroni corrected p-value at alpha = 0.01.

4.3.2 Bi-Parental Mapping Populations

A population of 341 F5-derived RILs was developed from the cross of awned cultivar LA95135

with awnless SS-MVP57 (LM population). LA95135 possesses the Rht-D1b (dwarfing) allele,

and the B1 allele for awns. SS-MPV57 has the Rht-D1a allele and the Ppd-D1a allele confer-

ring photoperiod insensitivity, as well as the B1 allele for awn suppression. Awned (NIL37-3)

and awnless (NIL37-14) sister lines were derived from a F5 plant of RIL37 heterozygous at

B1 and homozygous for Rht-D1b and Ppd-D1b.

During the winter of 2016-2017, the LM population was grown in the greenhouse to

evaluate spike morphology and kernel weight. Imbibed kernels from each RIL were placed

in a cold chamber kept at 4°C for 8 weeks and were transplanted into plastic cones (Volume

0.7L, 6.5 cm in diameter and 25 cm depth) containing soil mix. Plants were grown in a

completely randomized design with four replications in a greenhouse set to a 16-hour

photoperiod and a 20°C /15°C (day/night) temperature. The primary tillers of each plant

were used for evaluation of spike length, spikelet number per spike, kernel weight and

presence or absence of awns.

The LM RIL population was evaluated in the field at Raleigh, NC and Kinston, NC during

the 2017-2018 season. The 341 RILs were grown in an incomplete block design with two

replications at each location. The population was divided into five blocks, each consisting

of 72 entries and the two parents of the population. Sister lines NIL37-3 and NIL37-14 were

grown at Raleigh, NC in an experiment with two blocks of 25 replications each.

Plots consisted of 1 m rows spaced 30 cm apart. Six representative spikes from each

row were harvested and number of spikelets per spike recorded. Kernels were weighed

and counted to determine kernel weight. Rows were hand harvested and threshed using

a Vogel thresher. A 15 mL sample of grain was cleaned and morphometric parameters

(grain length, width, area, and weight) were obtained using a MARVIN grain analyzer (GAT
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Sensorik GMBH, Neubrandenburg, Germany). An estimate of test weight was obtained by

measuring the weight of grain in the 15 mL sample. BLUEs were calculated for individual

RILs using the R package lme4, treating genotype as a fixed effect and all other terms as

random (Bates et al., 2015).

The RIL population was genotyped and SNP identified using the GBS protocol as de-

scribed above, except that missing data were not imputed. A linkage map was constructed

with these data, KASP markers for major effect loci Rht-D1and Ppd-D1, and the presence

or absence of awns as a physical marker using the R packages R/qtl and ASMap (Bro-

man et al. 2003; Taylor and Butler 2017). QTL analysis was performed using composite

interval mapping, with significance thresholds for an alpha = 0.05 determined using 1000

permutations.

Three F2 populations (referred to as GxM, GxS, and LxS) were developed from crosses

between awned breeding lines from the association mapping panel, GA06493-13LE6 (G)

and LA09264C-P2 (L), with the awnletted cultivars SS-MPV57 (M) and SS8641 (S). After

heading, a total of 950 plants were evaluated for awn suppression. Fully awned plants were

placed in one category while awnletted or awnless plants were placed in a separate category.

Genomic DNA of the RIL and F2 populations was evaluated with KASP markers devel-

oped from sequences flanking GBS SNPs in the B1 region (Tables S1 and S2) in the LM

mapping population. In addition, polymorphisms were identified from exome capture

data obtained using a previously described assay (Krasileva et al. 2017) for parental lines of

mapping populations used in the USDA/IWYP-WheatCAP project that included LA95135

and SS-MPV57 (https://www.triticeaecap.org/qtl-cloning- projects). Linkage maps of the

distal region of the long arm of chromosome 5A containing B1 and selected KASP mark-

ers for each F2 and the RIL population were developed using R/qtl (Broman et al. 2003).

Scaffold assemblies of awnless winter wheats with the B1 suppressor (Cadenza, Paragon,

Robigus, and Claire) and the awned tetraploid wheat Kronos were downloaded from the

Earlham Institute website (https://opendata.earlham.ac.uk/opendata/data/). Scaffolds

containing portions of the B1 region in the awnless assemblies and Kronos were identified

using BLAST and aligned to the IWSGC reference assembly RefSeqv1.0 of Chinese Spring

using LAST (Kielbasa et al., 2011). SNPs between the awned and awnless wheats for KASP

marker design were identified with Samtools (Li et al. 2009).
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4.3.3 Analysis of Mutant Lines

Kernels of the awnless cultivar Brundage were treated using fast neutron irradiation with

a center total dose of 7 Gy air at the McClellan Nuclear Radiation Center (McClellan, CA,

USA). M1 kernels were planted at the Parker Farm in Moscow, Idaho. The main tiller was

harvested from each M1 plant and kernels were planted as 1 m rows in the 2017-2018

crop season. Rows were noted as being either awnless or segregating for presence of awns.

Markers in the B1 region were evaluated on DNA isolated from one awnless plant and up to

four awned plants from segregating rows. DNA samples of Chinese Spring and the Chinese

Spring deletion line 5AL-6 (TA4535-6) missing the terminal 32% of 5AL were included as

controls to evaluate genome specificity of markers. Progenies from the families with the

smallest deletion around B1 were grown in the greenhouse in Raleigh in 2018 to confirm

the awned phenotype.

4.3.4 Identification of Haplotypes in Diverse Wheat Germplasm

Genomic DNA from a panel of 455 winter and 1984 spring wheat accessions from the core

collection of the USDA-ARS National Small Grains Collection (NSGC) representing global

diversity was evaluated using KASP markers developed from a 127 kb region flanking the B1

locus. Data on the presence or absence of awns for winter wheat accessions was gathered

from the U.S. National Plant Germplasm System descriptor data (https://npgsweb.ars-

grin.gov). The spring wheat accessions were grown as single 1 m rows at Raleigh, NC. At

heading time, single tillers were selected for each accession, the presence or absence of

awns was noted and genomic DNA was isolated from the flag leaf.

4.3.5 Sequencing the B1 region

The two parents of the RIL population and eight individuals representing diverse haplo-

types for markers flanking B1 were selected for Sanger sequencing (Table S3). Amplification

of the TraesCS5A02G542800 coding sequence and 7 kb of surrounding non-repetitive se-

quence was performed with a nested PCR design to obtain specificity using NEB Longamp

polymerase (New England Biolabs, Ipswich, MA). The region was divided into 2.5 kb and

4.5 kb regions, and forward and reverse primers were developed for each region. Forward
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sequencing primers were designed every 500-800 bp for Sanger sequencing of the region.

CodonCode Aligner software (CodonCode Corporation, www.codoncode.com) was used to

check base calls and assemble sequence reads into contigs.

4.3.6 Gene Expression

To evaluate expression of candidate genes, tissue from immature inflorescences was col-

lected from primary and secondary tillers of plants of LA95135 and SS-MPV57, as well as

the awned cultivar AGS 2000 (b1) and awnless cultivar Massey (B1). Individual samples

from spikelets at similar stages were grouped for analysis to assess developmental vari-

ation in gene expression. RNA was isolated from plant tissue using the Zymopure RNA

Extraction kit (Zymo Research, Irvine, CA), and reverse transcribed with the ThermoFischer

Reverse Transcription kit. The predicted exons of candidate genes TraesCS5A02G542700

and TraesCS5A02G542800 were aligned to similar sequences on chromosomes 4B and 4D

to design genome-specific primers for qPCR with an amplicon size of 100-150 bp and a

Tm of 60-62o C (Table S4). Quantitative PCR reactions were performed using a CFX384

real time PCR machine (Bio-Rad Laboratories, Hercules, CA) with Sybr green qPCR Master

Mix (Applied Biosystems, Foster City, CA). Reactions included primers for the candidate

gene along with a β -ACTIN control at an annealing temperature of 61o C (Table S4). There

was a minimum of six awned and awnless samples at each developmental stage and three

technical replications were performed per sample. Cq values were calculated for each

replication using the Biorad CFX Maestro software and normalized to expression relative

to the endogenous control β-ACTIN with 2(AC T I N C T−T ARG E T C T ).

As an additional evaluation of gene expression over the course of apical development,

the sequences of genes in the B1 region were submitted to the WheatExp wheat expression

database (https://wheat.pw.usda.gov/WheatExp/). β-ACTIN primer sequences were also

submitted to verify that its expression is consistent during apical development.
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4.4 Results

4.4.1 B1 awn suppression is associated with test weight, spikelets per

spike and kernel weight

Of the 640 lines evaluated in the eastern soft winter wheat panel, 58% had awns. Associa-

tion mapping utilizing 14,567 GBS markers identified 30 markers significantly associated

(adjusted P-value < 0.01) with the presence or absence of awns (Table S5). The significant

markers were located distally on the long arm of chromosome 5A, consistent with the

location of the B1 awn suppressor (Fig. 1). Alignment of markers to IWGSC RefSeqv1.0

of Chinese Spring wheat placed the B1 locus in a 25 Mb region between 681,455,268 bp

and 706,705,101 bp. A SNP located at 698,528,417 bp on chromosome 5A (5A28417) was

highly significant (P-value = 7. x 10-57) and co-segregated with awn status in this set of

lines. Association analysis of historical data for test weight and grain yield of the GAWN

and SunWheat regional testing nurseries identified a significant association of test weight

with SNP 5A28417 (P-value = 4.1 x 10-7; Fig. 1a). Test weight is a measure of the weight of

a standard volume of grain and is a general indicator of grain quality parameters such as

kernel size and density. No significant markers for grain yield were identified.

Analysis of the LM RIL population developed from the cross of fully awned cultivar

LA95135 with awnless SS-MPV57 indicated that awn inhibition was controlled by a single

locus on chromosome 5A, co-segregating with SNP 5A28417. Observed awn phenotypes in

RILs having residual heterozygosity at B1 illustrated that the awn suppression was mostly

dominant with short awns present on lemmas of apical spikelets of heterozygous plants

(Fig 2a).

Multiple QTL for spikelets per spike and kernel morphometric traits were identified in

the LM RIL population, including highly significant QTL associated with awn suppression

at the B1 locus and with markers predictive of major effect photoperiod locus Ppd-D1 and

plant height gene Rht-D1(Fig. 3, Table S6). The Rht-D1b semi-dwarfing allele was associated

with the largest effects, contributing to decreases in kernel weight, kernel width and kernel

area (Table S6). The Ppd-D1a allele for photoperiod insensitivity was also associated with

decreased kernel weight in the greenhouse and a 2% and 6.1% decrease in number of

spikelets per spike in the field and greenhouse, respectively. The presence or absence of
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TraesCS5A02G542800

(698528536 - 698529001 bp)

5A28417

Awn Status

Chromosome 5A (bp)

-

5A28417

-

Test Weight(a)

(b)

Figure 4.1: Association analysis identifies the candidate awn inhibition gene on wheat
chromosome 5A. Genome-wide association analysis for test weight(a) and awn status (b).
The most significant marker awn status (5A28417) also is the most predictive marker for
test weight and is located 219 bp upstream of candidate zinc finger TraesCS5A02G542800.

awns, included in the genetic map as a physical marker, was significantly associated with

QTL for number of spikelets per spike (LOD = 8.4), kernel weight (LOD = 6.5), kernel length

(LOD= 9.5), and test weight (LOD= 5.6) (Fig. 3). In the greenhouse experiment, the presence

of awns increased thousand kernel weight by 1.47 g (5.1%), and decreased spikelets per

spike by 0.48 spikelets. In the field experiment, presence of awns increased kernel weight

by 0.88 mg (3.2%), and decreased spikelets per spike by 0.37 spikelets (Fig. 2b). In addition,

QTL at B1 were significantly associated with estimated test weight and kernel length in

2018 field data (Fig. 2b). Highly significant (P < .001) differences in mean spikelets per

spike, kernel weight, estimated test weight, and kernel length were observed when awned
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and awnless F5-derived sister lines from heterozygous inbred line RIL37 were evaluated in

the 2018 field experiment (Fig. 2c, 2d). Most notably, awned line NIL37-3 had 0.85 fewer

spikelets per spike, a 6.3% increase in kernel weight, and an 11.6% greater estimated test

weight compared with awnless sister line NIL37-14.

** ** ** **

**********

(b)

(d)

(a)

Genotype

Genotype

(c)

1 cm

1 cm

B1B1 b1b1

B1B1 b1b1B1b1

Figure 4.2: Differences observed between awned and awnless recombinant inbred lines
(RIL) and near isogenic lines (NIL) of wheat. (a) Spikes from a segregating field row from
the LA951359SS-MPV57 (LxM) RIL population show the effect of the mostly dominant
Tipped1 (B1) allele. (b) Comparison of BLUEs calculated for spikelets per spike, kernel
weight, test weight and kernel length indicate differences between awned vs awnless lines
in the LxM RIL population. Significant difference are indicated (***, P < 0.001). (c) Spikes
for HIF-derived NIL families 37-14 (left) and 37-3 (right), differing at the B1 locus. (d) The
B1 NILs also differ significantly (***, P < 0.001) for all four traits in a highly replicated field
experiment in Raleigh, NC in 2018.
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4.4.2 Fine Mapping Identifies B1 Candidate Genes

Significant SNP 5A28417 identified in the B1 QTL region was located 219 bp upstream of

predicted gene model TraesCS5A02G542800 located on chromosome 5A from 698,528,636

bp to 698,529,001 bp in Chinese Spring RefSeqv1.0 (IWGSC 2018). The LM RIL population

and three F2 populations developed from crosses between selected awned and awnless

individuals from the association panel were genotyped for 8 KASP markers targeting an 8.52

Mb region flanking TraesCS5A02G542800 (Fig. 4 Table S2). In each population, an awnless

phenotype was conferred by a single dominant allele co-segregating with KASP marker

5A28417. Exome capture of the LA95135 and SS-MPV57 parents of the LM RIL population did

not reveal polymorphisms in the TraesCS5A02G542800 coding sequence. Polymorphisms

identified in predicted genes proximal (TraesCS5A02G542600 and TraesCS5A02G5426700)

and distal (TraesCS5A02G542900) were targeted for marker development. KASP marker

5A15019 targeted an A/G variant in intron five of predicted gene TraesCS5A02G542700 and

BW8226_227 targeted a T/G polymorphism in exon two of TraesCS5A02G542600. Marker

5A30334 targeted a C/T variant in exon one of predicted gene TraesCS5A02G542900.

Recombination within the bi-parental populations narrowed the genomic region to

a 127 kb region containing two predicted genes (Fig. 4). Recombination events observed

between the awn phenotype and marker 5A30334 in the LM RIL population located the SNP

in TraesCS5A02G542900 0.2 cM distal to B1 (Fig. 4a). However, this did not exclude potential

causative variation in the TraesCS5A02G542900 promoter region. No recombination was

observed between B1 and 5A28417, 5A15019 and BW8226_227 in the LM population. Of

the 950 individuals evaluated from the three F2 populations, individual GM#101 from

the cross between GA06493-13LE6 and SS-MPV57 was determined to be homozygous for

BW8226_227 and heterozygous for 5A28417 and 5A15019. The awn phenotype segregated in

a progeny test of 16 F3 plants derived from GM#101, placing the SNP in TraesCS5A02G542600

0.2 cM proximal to B1. Mackay et al. (2014) also identified BW8226_22 as associated with but

proximal to B1, both in a MAGIC population and a diversity panel. These results narrowed

candidate genes underlying B1 awn suppression to predicted genes TraesCS5A02G542700,

TraesCS5A02G542800, and the promoter region of TraesCS5A02G542900.

Analysis of awned M2 plants of the awnless variety Brundage identified deletions on the

distal part of 5AL encompassing the candidate genes (Table 1). Genomic DNA of awned and

awnless M2 plants along with Chinese Spring and deletion line 5AL-6 (TA4535-6) missing
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Figure 4.3: QTL mapping in a wheat population segregating for Tipped1 (B1) awn sup-
pression. Heatmap of LOD scores for composite interval mapping in the LxM population
of traits significantly impacted by presence or absence of awns. Traits from the outer to
inner circle are thousand kernel weight, test weight, kernel length and spikelets per spike.
Location of the Rht-D1, Ppd-D1, and B1 loci are noted in the center. Data on thousand
kernel weight, test weight and kernel length were collected from the field in Raleigh, NC in
2018. Data on spikelets per spike were collected from the field in Raleigh and Kinston, NC
in 2018.

the terminal 32% of 5AL was used to amplify 11 KASP markers targeting 5AL from 696 Mb

to 706 Mb. For all markers, amplification was observed for wild-type Brundage, awnless

plants from each M2 family, and from Chinese Spring. No amplification was obtained for

deletion line 5AL-6, suggesting genome specificity of the primers. Deletions in the region

were observed for all 53 awned plants selected from 17 segregating M2 families (Table 1).

As expected with gamma irradiation, large deletions were observed with the majority of the

M2 lines having lost more than 7.5 Mb of the surrounding region. The smallest deletion was

observed for mutant line Br-187 (Fig. 5) and was estimated to be between 19.6 kb and 392.8

kb in size and included candidate genes TraesCS5A02G542700 and TraesCS5A02G542800.

Amplification of markers 5A10592 and 5A30334 indicated that TraesCS5A02G542900 was
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not deleted from Br-187, eliminating it as a candidate gene (Table 1; Table S1). An awnletted

phenotype was observed for the B1 hemizygous F1 from the cross of Br-187 with awnletted

cultivar NC-Neuse (Fig. 5).

Evaluation of awned and awnless wheats in the exome capture data set identified ad-

ditional SNPs proximal to and within predicted gene TraesCS5A02G542700 annotated

as universal stress protein family with protein kinase domain. Haplotypes were com-

pared to sequence data of the orthologous gene TRIUR3_34498 from Triticum Urartu

(https://www.ebi.ac.uk/ena/data/view/GCA_000347455.1), the awned progenitor of the

A-genome in wheat. A SNP unique to awned wheats and T. urartu predicted to create a

missense mutation in exon 9 (5A16541) was targeted for development of a KASP assay.

The winter wheat diversity panel was screened with the 5A16541 marker and previously

developed marker for intronic SNP 5A15019. Of the 455 lines, 55 having the SS-MPV57

(B1) 5A15019 allele and 99 individuals with the SS-MPV57 5A16541 allele possess awns,

suggesting that neither of these polymorphisms in TraesCS5A02G542700 underlie B1 awn

suppression.

4.4.3 Characterization of B1 Candidate Gene TraesCS5A02G542800

Our fine mapping narrowed the B1 locus to a 127 kb region of mostly repetitive sequences

in the Chinese Spring reference genome containing predicted genes TraesCS5A02G542700

and TraesCS5A02G542800. Marker analysis of wheat germplasm suggested that polymor-

phisms in predicted gene TraesCS5A02G542700 were not predictive of awn suppression.

Thus, TraesCS5A02G542800, annotated as a 366 bp single exon predicted C2H2 zinc finger

transcription factor seemed a strong candidate for the dominant B1 awn suppressor. A pre-

dicted protein sequence was used to identify related genes in the Uniprot database. While

similar C2H2 zinc fingers in related grass species were identified, there are no publications

characterizing these genes. The most similar characterized gene to TraesCS5A02G542700 is

KNUCKLES (KNU) in Arabadopsis thaliana, a C2H2 zinc finger involved in floral develop-

ment sharing conserved zinc finger and N-terminal ethylene-associated response motifs

(EAR-like) (Fig. 6).

Variation within the TraesCS5A02G542700 coding sequence was not was found between

the Chinese Spring RefSeq v1.0, scaffold assemblies of winter wheats with the B1 sup-
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Figure 4.4: Fine mapping of B1 in wheat. (a) Genetic distances in theB1region calcu-
lated from the LA95135xSS-MPV57 (LxM)recombinant inbred line (RIL) population and F2

population GA06493-13LE6xSS-MPV57 (GxM), compared to physical distances obtained
using the International Wheat Genome Sequencing Consortium RefSeqv1.0 Chinese Spring
reference genome. (b) The fine-mapped B1 region in Chinese Spring containing candidate
gene TraesCS5A02G542800 is shown relative to the genetic and physical maps. The B1 locus
co-segregates with single nucleotide polymorphism (SNP) markers 5A15019, 5A28417 and
5A32641. Genes co-segregating with awn status are highlighted in red. Approximate posi-
tions of SNP markers are shown, including the most significant genotyping by sequencing
marker in both the RIL population and association mapping results(5A28417), and the
marker most predictive of awn status in global germplasm (5A32641).

pressor (Cadenza, Paragon, Robigus, and Claire) and the awned tetraploid wheat Kronos

(https://opendata.earlham.ac.uk/opendata/data/). In Chinese Spring, the gene is sur-

rounded by more than 100kb of repetitive elements, hindering assembly and comparison

of the region in the scaffold assemblies. In the available B1 cultivar scaffolds, however,

at least 10kb of additional repetitive elements were observed proximal to our candidate

gene suggesting insertion or removal of transposable elements since the divergence of the
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available B1 assemblies and Chinese Spring.

1 cm

Br. WT Br. 187 NeuseF1

Figure 4.5: Deletion of B1 in awned wheat mutants. Wild-type Brundage wheat (Br-WT),
Brundage mutant line 187 (Br-187) having the smallestdeletion in the terminal part of
chromosome 5AL surrounding TraesCS5A02G542800. The awnletted phenotype is observed
in the F1 hybrid from the cross Br-187xNC-Neuse (B1).

B1 is located in a region of 5AL originating from a translocation with the 4A chromosome

that occurred in the A-genome diploid progenitor of common wheat (Dvorak et al., 2018).

Nucleotide BLAST was used to identify two regions on chromosomes 4B and 4D syntenic to

the fine-mapped region. Sequences similar to the candidate C2H2 zinc finger were found

in both regions, annotated as TraesCS4D02G476700LC on the long arm of chromosome

4D (78% nucleotide identity), and unannotated on chromosome 4B (80% nucleotide iden-

tity). The 4BL sequence contains a frameshift mutation and is not annotated in either the

high confidence or low confidence gene set of the IWGSC v1.1 annotation (https://wheat-

urgi.versailles.inra.fr/Seq-Repository/Annotations). TraesCS4D02G476700LC differs some-

what from TraesCS5A02G542700 in the region between the zinc finger and EAR-like motifs,

including a 10 amino acid insertion in the A-genome from positions 90-99 (Fig. 6). Phylo-

genetic analysis by Huang et al. (2019) grouped B1 and its homoeologs with orthologous

proteins of the progenitor species T. urartu and Aegilops tauschii.
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C2H2 Zinc Finger EAR-like(a)

(b)

EAR-like

Figure 4.6: Wheat B1 is a C2H2 zinc finger protein with ethylene-associated response
(EAR) motif. (a) Gene model of TraesCS5A02G542800 with potential conserved domains.
(b) Alignment of functional motifs from characterized Arabidopsis C2H2 zinc finger
KNUCKLES with candidate B1 gene TraesCS5A02G542800 and its D-genome homoeolog
TraesCS4D02G476700LC. Cystedeine and histidine residues responsible for zinc finger
binding and core plant zinc finger sequence QALGGH are conserved between the wheat
genes and KNUCKLES (Takatsuji, 1999 from Payneet al., 2004.) A C-terminal EAR-like motif
implicated in recruitment of histones in KNUCKLES is conserved (Hiratsuet al., 2002 from
Payneet al., 2004). A potential N-terminal EAR motif is not conserved.

4.4.4 Up-regulation of TraesCS5A02G542800 is Associated with B1 Awn

Suppression.

In data from WheatEXP, TraesCS5A02G542700 expression increases as the early inflo-

rescence develops, and decreases after the emergence of the head (Fig. S1), while

TraesCS4D02G476700LC increases in expression later in the development of the spike.

The WheatFP browser (http://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi) (Ramírez-

González et al. 2018; Winter et al. 2007) was used to localize gene expression in an awned

spring variety Azhurnaya. TraesCS5A02G5426800 is most highly expressed in the developing

inflorescence, with some expression in the developing awns, ovaries, and grain tissues,

while TraesCS4D02G476700LC is mostly expressed later in spike development (Fig. S2,

S3). Similar analyses of predicted gene TraesCS5A02G5426700 indicate that this gene is

expressed in most tissues, with higher expression in spikes after the development of awn

tissue (Fig. S4).

Gene expression data from qPCR determined that TraesCS5A02G5426800 showed a

7-fold average increase in gene expression (P < 1e-7) in awnless plants compared to awned

plants (Fig. 7) whereas TraesCS5A02G5426700 was expressed similarly in both awned and

awnless individuals (Fig. S5). Developing inflorescences were grouped into four stages

based on development (Fig. 7b). Within each group, expression of TraesCS5A02G5426800

was higher in awnless individuals, suggesting a mechanism of awn suppression associated
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with this gene.
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Figure 4.7: Expression of TraesCS5A02G542800 increases in spikes of awnless wheat.
(a)Expression of TraesCS5A02G542800 in apical meristems of awned (blue, A+) and awnless
(red, A) wheat plants at different developmental stages where 1 = younger meristems; and
4 = older meristems. Expression is relative to the reference gene β − Ac t i n . Significant
difference between awned and awnless individuals are indicated(***, P < 0.001; **, P < 0.01;
*, P < 0.05).Number of biological replicates (n) is given per group, with three technical
replications per biological replicate. (b) Representative spikes at each developmental stage.

Given fine-mapping of awn status to this interval, differences in expression imply

the existence of cis-regulatory variation either directly upstream in the promoter of

TraesCS5A02G5426800 or in nearby enhancers or repressors. A 7 kb region of non-repetitive

sequences surrounding the B1 candidate gene (3 kb upstream and 4 kb downstream) was

sequenced in a set of 10 individuals, including LA95135, SS-MVP57, and eight accessions

of T. aestivum selected from the NSGC wheat core collection based on diversity in geo-

graphic origin and haplotypes of KASP markers in the region from 698.51 Mb to 698.62 Mb

of 5AL (Table S4). No polymorphisms in the TraesCS5A02G5426800 coding sequence were

observed, and sequence variation proximal to the gene in the promoter region (including

marker 5A28417) was not predictive of the awn suppression phenotype. A 30 bp deletion
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4,005 bp downstream of the TraesCS5A02G5426800 start codon was most predictive of awn

suppression in this set. KASP marker 5A32641 designed around this deletion co-segregated

with B1 in the bi-parental mapping populations (Fig. 4).

4.4.5 Haploid Diversity in Global Wheat Germplasm

Marker 5A32641 was highly predictive of awn suppression in 2439 winter and spring wheat

accessions in the USDA NSGC core set. Of the 455 winter wheat accessions evaluated

57% were awnless, compared to 45% of 1984 spring wheat accessions (Table S7). The 30

bp deletion distal to TraesCS5A02G5426800 was present in 98% of awnless winter wheat

accessions and all but 59 of 696 awnless spring lines (92%). Awnless lines without the 30

bp deletion downstream of TraesCS5A02G5426800 may possess either the Hd or B2 awn

suppressors. Of the 1558 awned accessions, only 18 were homozygous for the deletion. Of

these, 13 accessions are landraces from Sudan, Egypt, and Oman, suggesting they may

share a rare genetic variant in either the candidate gene region or at the B1 target. Overall,

these results suggest that the dominant B1 inhibitor is the primary determinant of awn

suppression in wheat globally.

Eight haplotypes were identified when six SNP markers flanking B1 were examined

in conjunction with marker 5A32641 (Table 2). Marker haplotype 1 (Hap1) present in the

awned cultivar LA95135 and Hap8 present in awnless cultivar SS-MPV57 were the most

common, detected in 55% and 35% of accessions respectively (Fig. 8). The majority of awn-

less wheats were categorized as having the B1-associated Hap8. A small number of awnless

spring wheat accessions from various geographic regions possessed Hap7 characterized

by the 30 bp deletion distal to the candidate B1 gene and differing from Hap8 at marker

5A28417 proximal to B1. In contrast, seven of the eight haplotypes were observed in awned

accessions, with Hap1 being by far the most common. Higher haplotype diversity associ-

ated with the ancestral B1 allele is expected assuming B1 originated and spread during or

after the domestication of cultivated wheat.

Hap1 was also observed in awnless accessions that may possess the B1 allele and some

combination of the Hd and B2 alleles. Of these lines, 67% originated from central and south

Asia, primarily Nepal and India, suggesting regional variation in control of awn suppression

(Fig. 8). The greatest diversity in haplotypes was in accessions from Central Asia where
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Figure 4.8: Distribution of haplotypes in the B1 region in 2439 global wheat accessions.
The majority of awn inhibited wheats possess B1-associated Hap8 and Hap7, implicating
B1 as the predominant determinant of awn suppression in all regions except South Asia.
Hap1 that are awnless lines likely possess other awn-inhibiting genes. Although Hap1 is the
predominant haplotype associated with the b1 allele in awned accessions, rare haplotypes
associated with geographical origin are observed. In Eastern Europe, Hap6 is a major
haplotype associated with the presence of awns that is rare outside of Europe and North
America. Lines from Central Asia contain a diverse set of haplotypes associated with the
presence of awns. Bars are sized based on proportion awnless and awned accessions
evaluated from each region.

all haplotypes except Hap4 were observed. Although all eight haplotypes were present in

accessions from Western Europe, 95% of these accessions had either Hap1 or Hap8.

4.5 Discussion

Global variation for awn length in wheat suggests that the presence or absence of awns

may be differentially adaptive to varying environments and production systems. Awns

are known to contribute to yield in warmer, drier environments, cooling the wheat spike

and supplying carbohydrates to developing grain (Grundbacher 1963; Kjack and Witters

1974; Motzo and Giunta 2002; Li et al. 2006; Tambussi et al. 2007; Amjad Ali et al. 2010;

Maydup et al. 2014). A significant association of the B1 awn suppressor with reduced

test weight in our association panel suggests that awns influence kernel size in winter

wheat grown in the southeastern United States, although there remains the possibility

that a tightly linked variant co-segregating with B1 is also impacting kernel morphology.

In the bi-parental LM RIL population, QTL analysis confirmed that the presence of awns
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was associated with increased kernel weight and greater kernel length, but with decreased

spikelets per spike. In rice, which has non-photosynthetic awns, disabling GAD1 suppresses

awn elongation, but also decreases grain length while increasing grains per panicle (Jin et al.

2016). Thus, a current hypothesis is that decreased grain size in awnless wheats may also

be due to changes in floret development associated with awn inhibition, rather than simply

decreased availability of photosynthate. Except in forage cultivars, the most economically

important organ in wheat is the spike. As such, developing a better understanding of the

gene networks that control spike development is critical for wheat breeders. Consistent

with other studies, we observed that awn suppression was associated with an increase

in the number of spikelets per spike (Rebetzke and Richards 2000). A major hindrance

to increasing yield of modern wheat cultivars is the availability of sink tissues to fill with

carbohydrates – increasing spikelet number is therefore one strategy to increase the number

of grains harvested per unit area (Miralles and Slafer 2007). The final number of spikelets

in wheat is correlated with the duration of the reproductive growth period, and genes

associated with flowering time in wheat can influence the number of spikelets per spike

(Guo et al. 2018). In our QTL mapping study, the segregating Ppd-D1 flowering time allele

was associated with QTL for both spikelets per spike and flowering time, but the B1 region

was associated only with spikelets per spike, indicating that B1 influences the number of

rachis nodes through a different mechanism.

Association of B1 awn suppression with the up-regulation of candidate gene

TraesCS5A02G5426800 was identified in parallel by Huang et al. (2020) using RNA-

sequencing of bulked awned and awnless lines. In addition, they find that constitutive

over-expression of TraesCS5A02G5426800 produces an awnletted phenotype in trans-

genic plants produced from an awned wild type. The closest characterized genes to

TraesCS5A02G5426800 as identified through protein BLAST are a set of zinc finger transcrip-

tion factors in Arabidopsis , all of which contain conserved zinc finger and EAR-like motif

domains. This family of transcription factors are usually repressors; the zinc finger domain

binds to the target sequence, and the EAR-like motif recruits histones which down-regulate

the target gene (Kagale and Rozwadowski 2011). The best characterized member of this

family, KNUCKLES (KNU), disrupts stem cell maintenance in Arabidopsis (Payne et al. 2004).

The floral homeotic protein AGAMOUS (AG) up-regulates KNU by binding to its promoter,

with KNU in turn repressing the homeodomain protein WUSCHEL (WUS) until a specific

developmental stage (Sun et al. 2009). WUS is responsible for the maintenance of stem

cells in Arabidopsis , and over-expression of KNU preemptively terminates floral meristem
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development (Sun et al. 2009). In this way, KNUCKLES represses growth of certain floral

tissues to allow other floral tissues to develop at the same pace. If B1 plays a similar role

in wheat, its over-expression suppressing developing awn tissue, this suggests a potential

explanation for the dominance of the B1 allele. This is examined in our B1 companion

paper, where constitutive over-expression of B1 suggests a role as a transcriptional repressor

(Huang et al. 2020).

Haplotype analysis of global wheat germplasm confirms that B1 is the predominant

source of awn suppression in hexaploid wheat. The B1 companion paper in this issue

observed similar results in common wheat and identifies this gene as a source of awn

suppression in tetraploid T. turgidum ssp. durum (Huang et al. 2019). Using six selected

KASP assays, we identified two dominant haplotypes in the region of non-repetitive se-

quence flanking B1, with a smaller number of lines having haplotypes associated with

geographic regions and the greatest number of haplotypes being present in central Asia and

Europe. In our companion paper, Huang et al. (2020) identified six B1-like haplotypes when

sequencing a 1961 bp region flanking the B1 coding sequence and using a different set of

markers near B1. They report a 25 bp deletion upstream of the candidate gene identified

as being linked to B1 but not entirely predictive, and as this deletion is found in Triticum

urartu it is unlikely to be causative. We identified a 30 bp deletion approximately 4 kb

downstream of the candidate gene that was not assayed by Huang et al. to be predictive of

the B1 awn suppressor in nearly all lines in this study. The marker 5A32641 assaying this

deletion distinguished haplotypes 1-6 associated with B1 from haplotypes 7-8 associated

with B1. Alignment of the regions in the B and D genomes syntenic to B1 reveal major vari-

ation in transposable elements both upstream and downstream of the candidate gene with

expansion observed in the A genome. In addition, assemblies of the region in wheat lines

carrying the B1 allele reveal further TE expansion in the region compared to lines carrying

the B1 allele. Determining if the observed up-regulation of B1 is a product of a binding

site mutation, a by-product of TE insertions, or some other causative polymorphism will

require further work.

Wheat’s large genome size, hexaploidy, and long-range linkage disequilibrium can

make association mapping more challenging than in other species. Using next-generation

sequencing technologies, wheat geneticists have created communal resources that facilitate

fine mapping and identification of candidate genes. The newly published wheat reference

genome, tools that make it accessible to other researchers, and technologies that take
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advantage of the reference genome (such as gene expression and exome capture data sets)

were all used in this study to reduce the time and cost of positional cloning. In parallel,

Huang et al. (2020) also identified overexpression of TraesCS5A02G5426800 as underlying

B1, through a combination of bulked segregant RNA-seq and fine-mapping in durum wheat,

deletion mapping in UK bread wheats, and transgenic validation. Cloning of B1 should

allow for further experiments to identify downstream targets and effects of this gene, and

to explore its interaction with other developmental genes. Improved understanding of the

relationship between awn development and control of spikelets per spike, grain number

and grain size in wheat will provide insight in to pathways that can be manipulated to

increase grain yield. Characterization of B1 adds to our growing understanding of the gene

networks underlying spike development in wheat and may help breeders produce varieties

better adapted to local climate and end-use.
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5.1 Abstract

The presence or absence of awns – whether a wheat line is ”bearded” or not – is the most

visible phenotype distinguishing wheat cultivars, but the contribution of awns to yield

differences remains unclear. Previous studies suggest the potential for awns to improve

yields in heat or water-stressed environments. Here we leverage historical phenotypic,

genotypic, and climate data to estimate the yield effects of awns under different environ-

mental conditions over a 12 year period in the Southeast US. Lines were classified as awned

or awnless and observed heading dates were used to associate grain fill period of each

line with climatic data and grain yield. Evidence was found for a positive yield effect of

awns, but only in heat and water stressed environments more common at more southern

locations. Breeders in environments where awns are only beneficial in some years may

consider selection for awned cultivars to both reduce year-to-year yield variability, and

with an eye towards future warming climates.

5.2 Introduction

Humans rely on wheat (Triticum aestivum L.) more than any other crop species for both

direct calories and protein (FAO 2020). Despite its global range, wheat is more sensitive to

heat and drought stress than other grains like maize (Zea mays L.) and sorghum (Sorghum

bicolor L.), in part due to a lower water use efficiency compared to its C4 relatives (Aggarwal

and Sinha 1983). Heat stress hampers plants’ ability to fill grain, through decreasing su-

crose levels and the overall duration of grain fill, and through deactivating the wheat starch

synthase enzyme responsible for assimilating carbohydrates into developing grain (Bhullar

and Jenner 1985; Hawker and Jenner 1993; Guedira and Paulsen 2002). The simplest way to

breed for drought and heat tolerance in areas where these stresses are common is to plant

yield trials in those environments. However, as climate change threatens higher tempera-

tures and altered precipitation patterns in areas without those stresses, an understanding

of the genetic and physiological basis of drought and heat stress response will be necessary

to breed for future conditions.

A principal morphological trait implicated in drought and heat stress response is the

presence or absence of awns or "beards". Awns are thin, rigid extensions of the lemma that

139



give wheat heads a brush-like appearance. In US germplasm, this trait is also a genetic

marker – the presence of absence of awns is determined by the B1 awn suppressor gene at

the end of chromosome 5A (Kato et al. 1998; DeWitt et al. 2020). Awn suppression results

from over-expression of the B-A1 C2H2 zinc finger (Huang et al. 2020; DeWitt et al. 2020).

Suppression of awns by B1 produces awn lengths ranging from a totally awnless phenotype

to an awnletted phenotype associated with short awns present near the tip of the spike

(Watkins and Ellerton 1940). For simplicity, we will hereafter refer to all these phenotypes

as "awnless".

As a typically monogenic and visually striking trait, studies on awns constitute some of

the earliest in genetics research. In Ohio field trials, Hickman (1889) found that "bearded"

cultivars out-yielded "smooth" cultivars 40.5 to 37.5 bu/acre. As early as 1937, it was "gen-

erally agreed that in certain cultivars awned cultivars out-yield awnletted or awnless ones",

and that "awned cultivars have been selected and grown in regions of limited rainfall,

for awnless types are generally not well-adapted to such conditions" (Gauch 1937). The

distribution of awned and awnless types in wheat cultivars globally supports this observa-

tion (Börner et al. 2005; DeWitt et al. 2020). Anecdotally, breeders targeting environments

warmer and dryer during the late growing season are disinclined to select awnless cultivars,

while breeders in cooler climates may prefer to select awnless cultivars.

Research into the yield effects of awns, and the role of heat and drought stress in those

effects, has centered on the photosynthetic potential of awn tissue (Grundbacher 1963;

Tambussi et al. 2005; Amjad Ali et al. 2010; Motzo and Giunta 2002; Li et al. 2006). The

movement of carbohydrates from awns into developing grain is facilitated by their physical

proximity, and awns may consist of up to half the photosynthetic area of late-season wheat

plants. As might be expected for a trait which has an environmentally conditional effect on

yield, estimates of the yield effects of awns have shown some cases where awned lines out-

perform their awnless counterpart (Vervelde 1953; Weyhrich et al. 1994; Motzo and Giunta

2002; Martin et al. 2003), but also some where no significant differences are identified

(Foulkes et al. 2007; Rebetzke et al. 2016; Sanchez-Bragado et al. 2020). Awns are more

effective at photosynthesizing in water-limited conditions, using less water per quantity of

CO2 assimilated, and contribute a greater portion of carbohydrates relative to other tissues

in water-limited and heat-stressed conditions (Evans et al. 1972; Blum 1986; Weyhrich

et al. 1995; Li et al. 2006; Maydup et al. 2014). Awn tissue often senesces last, and has a

higher temperature optimum for photosynthesis than flag leaf and spike tissue, which may
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contribute to grain yield in heat-stressed conditions (Blum 1986). At the same time, adaptive

advantage of awns in heat-stress environments may relate directly to the ability of awns to

help cool ears by transferring heat into the atmosphere. In studies of canopy temperature,

awns cool the head during grain fill (Ferguson 1975; Motzo and Giunta 2002; Rebetzke et al.

2016), which may reduce stress in a crop sensitive to heat during grain fill. The ability of

awns to cool canopy temperatures and more efficiently photosynthesize in water-limited

conditions may explain the perceived yield benefits of awned cultivars in warmer and drier

climates. In general, awns tend to be associated with an increase in grain weight at the

expense of grain number (Rebetzke et al. 2016; DeWitt et al. 2020; Sanchez-Bragado et al.

2020). B1 increasing total seed number may explain the prevalence of awnless varieties in

some environments, as increased seed number may lead to greater yields in environments

where plants are not source-limited. B1 increases seed number through increasing the

number of spikelets per spike, an effect that may be related to resource allocation towards

awns in the developing spike, or that may result from the effect on developmental pathways

of the increase in B1 expression also associated awn suppression.

Previous studies on the effect of awns on grain yield have focused on comparisons of

near-isogenic lines or a small number of lines in a limited sample of environments. To this

point no studies have directly estimated reaction norms for awn status in interaction with

environmental conditions. Here we use a large historic data set consisting of real breeding

lines where the frequency of B1 is close to 50% to estimate the allele by environment effect

of B1. Previous genotyping of these lines and identification of a SNP near B-A1 predictive of

awn status allows us to both classify historic lines into awned and awnless, and to control

for population structure with genotypic data when estimating allele effects. Observed

heading date was used to estimate grain fill periods for each line in each environment,

and weather data collected from public databases was averaged across this period to test

the interaction of B1 with environmental variables. We use the estimated effect of awns

on yield in interaction with maximum grain fill temperatures to investigate the utility of

selection for or againsted awned cultivars in different environments.
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5.3 Materials and Methods

5.3.1 Phenotypic data

Data on yield and heading date was collected for plots in cooperative nurseries representing

1,376 late-stage wheat lines submitted by participating public breeding programs in the

Southern and Mid-Atlantic winter wheat growing region of the United States. Participating

breeding programs were located at the University of Arkansas, Clemson University, the

University of Florida, the University of Kentucky, Louisiana State University, the Univer-

sity of Maryland, North Carolina State University, Virginia Polytechnic Institute and State

University, and the USDA-ARS SEA in Raleigh. Data from three cooperative nurseries (the

Mason-Dixon, Gulf Atlantic Wheat Nursery, and SunWheat) were used, to which individual

programs annually submitted entries that were planted once at all sites, but typically within

only a single year, excluding check cultivars that were planted across years to estimate year

effects (Table ??). Individual trials consisted of two to four replications of each line, and

analyzed data consisted of entry-means calculated by collaborators for each line in each

site-year combination. Trials were planted in the October or November prior to the harvest

year and were at minimum 1.3 m wide and 3.1 m long. Management of plots varied by

collaborator depending on state-specific recommendations. Yield was reported in bu/acre

based on whole-plot harvesting and weighing of grain, assuming a consistent test weight

of 60 lb/bu and adjusting for moisture content when appropriate. Heading date values for

lines were recorded as the date on which approximately half of wheat heads had emerged.

Nursery Years Mean # Sites Avg # Lines Entry Means Awned
Mason-Dixon 2012-2018 3.6 76.94 1,385 46%

GAWN 2008-2020 5.5 58.82 4,235 52%
SunWheat 2014-2020 4.6 85.03 2,721 64%

Table 5.1: Distribution of entry means among lines. Year ranges, mean sites per year,
average lines per year, max and minimum lines per year, total number of entry years, and
percentage of tested lines with awns are given.
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5.3.2 Genotypic data

Tissue samples from nursery lines were submitted to the USDA-ARS Eastern Regional Small

Grains Genotyping Lab for genotyping via genome-wide single nucleotide polymorphism

(SNP) markers. A genotype by sequencing approach using the PstI and MstI enzymes was

performed per Poland et al. (2012) to allow for joint discovery and calling of SNPs. SNP

discovery was performed through alignment of GBS reads from both the nursery lines

phenotyped in this study and additional soft red winter wheat (SRWW) lines to capture

additional variants that may be at low frequency in the study set. Reads were aligned to

version 1.0 of the International Wheat Genome Sequencing Consortium RefSeq assembly

(https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies) using version 0.7.12 of

the Burrows-Wheeler algorithm (Li et al. 2009) via Tassel 5GBSv2 pipeline version 5.2.35

(Glaubitz et al. 2014). The resulting Tassel discovery database was used to call SNPs using

reads from the nursery lines, and called SNPs were filtered to exclude markers with more

than 50% total missing data, less than 5% minor allele frequency, and greater than 10%

heterozygosity given the expected inbreeding of genotyped lines. Beagle was used to impute

missing SNPs (Browning and Browning 2016).

DeWitt et al. (2020) found that in US SRWW germplasm, awn status is a monogenic

trait controlled by the B1 gene. They identified a single GBS marker on chromosome 5A

at 598628417 bp (Refseq v1.0 coordinates) predictive of B1 in 98% of 640 SRWW lines that

constitute a subset of the lines in this data set. This SNP was also identified in the SNP

discovery database of the full set of SRWW lines, and used to determine allelic status of B1

in genotypes for which data on awn status was not available.

Covariance between allele frequency of B1 and population structure could bias estimates

of interactions between awns and environmental factors. GBS data was used to estimate

realized relationships between nursery lines for later population structure analysis. Markers

were first thinned based on LD (r 2 < 0.8), before being coded in terms of the allele dosage

of the minor allele. The realized relationship matrix G was computed via the Van Raden

method (VanRaden 2008) as:

G=
ZZ′

Σ2p (1−p )
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Where p represents a vector of allele frequencies of all SNP in the (-1, 0, 1) coded marker

matrix M, and Z =M - P, where P is a matrix consisting of the vector p repeated rowwise to

match the dimensions of M. Principal components of G were computed using the eigen

function in R (R Core Team 2021).

5.3.3 Environmental data

Weather data for the GPS coordinates associated with each site in each year were down-

loaded from NASA POWER using the nasaPower R package (Sparks 2018). Within each

site-year, principal grain fill periods were defined for each observed heading date by taking

the time from the day after heading through twenty five days. To test optimum grain filling

periods for each weather variable, additional variables were collected from twenty to thirty

days after heading. Literature suggests an effect of awns in improving photosynthesis dur-

ing grain fill in drought and heat stress conditions as a result of better heat conductance,

increasing water use efficiency with less transpiration, and later senescence. Therefore,

data on max temperature, precipitation, wind speed, and relative humidity were collected.

Within each grain fill period associated with a heading date in a site-year, collected weather

variables were averaged.

5.3.4 Testing and predicting weather effects

To estimate effects of B1 on grain yield, a mixed linear model was fit to allow for the estimate

of interactions between B1 and environmental variables while controlling for effects of

population structure and its interaction with environmental variables. Weather variables

are relative to heading date to allow for a range of variables within each site year associated

with each genotype’s mean heading date. Mean yield values for each line were computed

within each site-year as yi j k by collaborators prior to data aggregation. For awn status a of

line i , matrix of principal components Q with a vector of values for each line i , and matrix

of weather variables W with a vector of values for each line i within trial j in site-year k ,

the data was analyzed using the model:

yi j k ∼ ai +Qi +Wi j k +ai Wi j k +Qi Wi j k + g i + lk + t (l ) j k + ϵi j k
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Where g i represents the genotype effect of line i fit with the realized relationship matrix

(g i ∼N (0, Gσ2
g )), lk represents the random effect of the k th site-year with lk ∼N (0,σ2

l ),

and t (l ) j k represented the nested random effect of the j th trial within the k th site-year

with t j k ∼N (0,σ2
t ). The residual ϵi j k is drawn from ϵi j k ∼N (0, Rσ2

ϵ), where the diagonal of

R contains separate variances for different trials to accommodate heterogenous variances

across trials (R=σ2
r 1I ⊕ σ2

r 2I ⊕ ...σ2
r n I for n trials). The model was fit in Asreml-R, and

significance of main fixed effects was computed via the Wald test (Butler et al. 2017).

Estimates of the fixed effects were used to derive reaction norms for allele effects of B1 in

interaction with significant environmental variables. Reaction norm equations were used to

estimate allele effects of awns in each site-year, based on values for environmental variables

observed in those site-years. Assuming that trial locations within states are representative

of breeders’ target environments, site-year effects were grouped by state and averaged to

estimate mean allele effects of awns within each state.

5.4 Results and Discussion

5.4.1 Population Structure of Programs

To be useful in modeling the relative performance of lines from different programs under

different environmental conditions, the principal components of the realized relationship

matrix should capture genetic differences between programs resulting from patterns of

parental selection. At the same time, severe population stratification may hinder accurate

estimation of allele effects. The first four PCs of G together captured 14% of the total variation

in relationships between 1,371 genotypes. Public programs were separated by these first

four components (Fig. ??), but without severe stratification. This may be expected from the

structure of programs, which are distinct but cooperative and regularly share germplasm.

Averaging the values of all individuals within each program shows that the first PC separated

out the mid-Atlantic programs (MD, VA, KY, NC) from southern programs (FL, LA, TX, GA,

SC), while the second PC separated programs within the mid-Atlantic and southern groups

(Fig. ??). The fourth PC was also effective at separating the most southern programs that

may be more heat-stress resistant (FL, LA, and TX) from other germplasm. Discrepancies

from previous studies using this germplasm (e.g. Sarinelli et al. (2019)), which showed the
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Figure 5.1: Geographic and genetic distance between public programs. Public-sector
breeding programs contributing germplasm and phenotypes to tested nurseries are colored,
and field site locations labeled (A). The distance between individuals in the space of the
first four principal components of the realized relationship matrix G reflect geographic
separation of the programs (B).

principal components being largely reflective of the presence or absence of SNP-dense

translocations, result from LD thinning of the marker matrix performed prior to estimation

of the realized relationships between lines.

5.4.2 Environmental factors relevant to awn yield effects

Weather variables were selected based off of their role in generating heat stress or altering

transpiration rates: maximum temperature, precipitation, specific humidity, and wind

speed information was obtained for the growing season of each site year. An initial grain

fill window of 22 days after heading was assumed for initial testing of the importance of

variables, and the heading date of each plot in each site year was used to average weather

variables over that window. Of the tested variables, only maximum temperature was found

to have a significant interaction with awn status after controlling for population structure.

Testing possible alternative grain fill periods longer and shorter than 22 days, the grain

fill period of 23 days produced the strongest interaction between average daily maximum

temperature and awn status (p < 2.269E − 09). The first four principal components of
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Figure 5.2: Interaction betwee B1 and max grain fill temperature. Average maximium
daily temperature during grain fill at each site year was 24.1 ◦C (A), with a high maximum
grain fill temperature of 29.8◦C (Gainesville, FL 2017), and a low of 18.5◦C (Warsaw, VA 2020).
Estimated reaction norms for the conditional yield effect of the B1 awn suppressor (B). B1
awn suppression was favorable or neutral in most environment, but had a substantial yield
effect in heat-stressed environments.

G reflecting genetic distances between programs also interacted significantly with awn

status(PC1, p < 1.61E −03; PC2, p < 1.35E −04; PC3, p < 1.98E −07; PC4, p < 1.66E −04).

Both awned b1 and awnless B1 lines were lower-yielding in environments with higher

maximum temperatures during grain fill, but the decrease in yield was less severe for the

awned lines than for awnless lines (Fig. 5.2). The lack of association between lower precipi-

tation and improved yield for awn cultivars may suggest that direct cooling of the wheat

head is the primary driver of improved yield for awned cultivars in heat-stressed conditions,

but does not necessarily suggest that drought stress is unimportant physiologically for gen-

erating a yield effect of awns. Precipitation received during grain fill is only one of the drivers

of drought stress experienced by plants during grain fill, as increasing temperatures may

increase evapotranspiration and dry soil more rapidly. From the perspective of breeding

for target environments, however, to what extent improved yield in heat-stress conditions
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for awned cultivars results from heat stress per se or drought stress driven by increasing

temperatures is less important than knowing that awned lines out-perform awnless in

those conditions. Increasing performance of B1 awnless lines in cooler, higher-yielding

environments may relate to the increase grain number associated with awn suppression.

In this case, while B1 awn suppression may lower yields in poor environments, it may allow

plants to take advantage of good growing conditions with less source limitations.
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Figure 5.3: Distribution of estimated per-site b1 yield effects. The mean estimated yield
effect of awns is slightly negative in sampled environments, but environmental conditions
associated strong positive and negative yield effects are also observed.

5.4.3 Overall effect of awns on yield varies by environment, year, and

germplasm

Historic data on testing environments within each state were used to estimate the yield

effect of awns in each site year. Reaction norms estimated in the mixed model were com-

bined with the heading-date based grain fill mean daily maximum temperatures to estimate

environment-specific yield effects (Fig. 5.3). While the average estimated effect of awns was

slightly negative (-0.28 bu/acre), the effect within site years varied with temperatures from

a decrease of 2.8 bu/acre (Warsaw, VA in 2020), to an increase of 2.1 bu/acre (Gainesville, FL

2017). Breeders generally select field sites representative of their target environments, but

the proportions of warmer to cooler environments sampled by collaborators through the

trials in this data set likely does not accurately represent the relative proportions of those
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environments in real wheat acreage. Nevertheless, to get a sense of the within-state patterns

of b1 yield effects, effects on all field trials conducted within each state were averaged over

years (Table 5.2). Overall positive effects of awns on yield were observed in only site in

Florida and Texas. At the same time, the majority of states with an overall negative yield

effect of awns had years with a positive awns effect more than a quarter of the time. While

the states with the overall largest advantage for b1 and the largest advantage for B1 were the

most southern (FL) and most northern (MD) states respectively, awn effects did not scale

exactly with the overall climate of states. Despite being the state with the overall coldest

climate, Kentucky had the third-highest yield effect of b1, and an overall positive effect of b1

in 40% of years (Table 5.2). This likely results from the observation that Kentucky heading

dates were on average the latest of any state (128 days), pushing grain fill into late May

when temperatures rise. Conversely, South Carolina had one of the largest overall negative

yield effects of awns, potentially relating to its average early heading date (97.8). Because

heading date is itself under the control of environmental conditions, the effect of awns on

yield may not reflect overall climactic differences between regions. At the same time, effect

of awns on yield will vary within a population, reflecting differences in plants’ flowering

habits.

State µH D µY i e l d µG F M a x C b1 Effect % Positive Trials
FL 95.4 56.66 26.98 0.95 77
TX 99.5 60.36 24.98 0.07 60
KY 128.1 76.92 24.52 -0.13 40
LA 92.9 56.94 24.42 -0.18 20
GA 96.4 73.83 24.19 -0.28 25
AR 101.7 58.57 23.94 -0.39 08
NC 104.6 66.80 23.55 -0.56 33
SC 97.8 81.13 23.30 -0.67 33
VA 118.8 77.05 23.24 -0.70 30

MD 125.9 81.04 22.66 -0.95 00

Table 5.2: Mean observations and estimated effects

Breeders may consider the effect of awns on both overall yield and on year-to-year

variability in yield. While in a majority of sampled environments the b1 allele for awn

presence was associated with negative yield, yields in these environments were overall

higher than environments where b1 had a positive effect. If awnless cultivars have greater
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yield potential in favorable conditions, but suffer in stressed environments, then their

overall variability will be higher. In environments where the yield effect of awns is sometimes

negative and sometimes positive, growers may prefer awned cultivars with a higher yield

"floor", even if they have lower overall yield potential.

Variability in the yield of B1 versus b1 lines within each state was estimated using the

site year estimates of awn effects (Table 5.3). While Virginia was the state with the second

lowest overall yield advantage for awned cultivars, high variability in grain fill temperatures

resulted in a much higher estimated yield variability for awned lines compared to awnless.

This contrasts with Arkansas, where B1 awnless lines were overall higher-yielding and were

only marginally more variable. The year to year heat stress variability underlying these

differences in estimates of yield variability is difficult to estimate. Variation in heat stress

during grain fill will result from both variation in weather conditions during the winter

and spring that influence the heading dates of wheat lines, and then variation in weather

conditions during grain fill itself. As climate change increases both overall temperatures and

temperature variability, it may be valuable to select for traits that help produce consistent

yields under a range of conditions.

State σ2
H D σ2

H e a t σ2
µB1Y i e l d

σ2
µb1Y i e l d

Diff.σ2

VA 77.5 5.06 30.3 20.3 10.0
FL 60.3 3.32 19.8 13.3 6.5
NC 57.7 2.89 17.3 11.6 5.7
MD 130.7 2.92 17.4 11.7 5.7
TX 147.2 2.74 16.4 11.0 5.4
SC 72.5 2.53 15.1 10.2 4.9
KY 17.2 1.64 9.8 6.6 3.2
LA 50.9 1.58 9.5 6.4 3.1
GA 36.0 0.96 5.7 3.8 1.9
AR 147.6 0.73 4.4 2.9 1.5

Table 5.3: Variance in observations and estimated effects. States ranked according to the
benefits of developing awned cultivars in terms of reduction of year to year yield variance.
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5.5 Conclusions

The striking visual difference between awned and awnless cultivars has made the B1 gene

one of the best-studied in crop genetics. Conflicting results on the importance of this gene

in contributing to yield variation, potentially in an environment-specific manner, has been

limited by geneticts’ ability to sample a sufficient number of diverse environments and

genotypes to make real inferences on its yield effect. Here, we present the largest study yet

on this gene, and find that its effect on yield varies in relation to heat stress during grain

fill. We estimate that while awns have a slight negative effect across years for all states in

our data set except Texas and Florida, on a year-to-year basis the effect of awns may be

positive or negative, depending on heat stress during grain fill. Overall estimated effects

suggest that B1 awn suppression provides a slight yield improvement in high-yielding

environments, but will lower yields relative to awned lines in lower-yielding, heat stressed

environments. Breeders targeting environments where wheat plants experience heat stress

during grain fill should select awned b1 cultivars, while those targeting environments that

rarely experience grain fill heat stress should select awnless B1 cultivars. At the same time,

breeders targeting environments where awns have a small average negative yield effect

may still consider selecting awned cultivars for their higher yield "floor" and lower year-

to-year yield variability. As both overall temperature and year-to-year variability in heat

stress increase, breeders in these marginal environments may also consider preferentially

selecting awned lines for future climates.

5.6 Competing interests

The authors declare that they have no competing interests.

5.7 Author’s contributions

ND prepared genotype data, performed all analyses, and wrote the initial draft of the

manuscript. ND, MG, JPM, and GBG conceived of the analyses. ND, MG, JPM, and GBG

edited the manuscript. JL and BPW organized and prepared the phenotypic data. JPM, DM,

151



NS, CG, RB, MM, SH, MAB, RM, AI, DVS, and VT planted and managed yield trials, collected

phenotypes, and performed initial within-site analyses.

5.8 Acknowledgements

The authors thank the staff of the USDA-ARS Eastern Regional Small Grains Genotyping

lab, particularly Kim Howell and Jared Smith, for DNA extraction and library preparation

for the genotype data used in this study. Thanks to Zachary Winn for feedback on some

analyses early in the drafting of the manuscript. The authors also thank staff of cooperating

breeding programs for planting and phenotyping of cooperative yield trials. Weather data

was obtained from the NASA Langley Research Center (LaRC) POWER Project funded

through the NASA Earth Science/Applied Science Program. Support was provided by the

Agriculture and Food Research Initiative Competitive Grant 67007-25939 (WheatCAP-IWYP)

from the USDA NIFA.

152



References

Aggarwal, P. and Sinha, S. (1983). Water stress and water-use efficiency in field grown
wheat: A comparison of its efficiency with that of C4 plants. Agricultural Meteorology,
29(3):159–167.

Amjad Ali, M., Ali, Z., Zulkiffal, M., and Zeeshan AARI, M. (2010). Source-Sink Relationship
between Photosynthetic Organs and Grain Yield Attributes during Grain Filling Stage in
Spring Wheat (Triticum aestivum). Technical report.

Bhullar, S. and Jenner, C. (1985). Differential Responses to High Temperatures of Starch
and Nitrogen Accumulation in the Grain of Four Cultivars of Wheat. Functional Plant
Biology, 12(4):363.

Blum, A. (1986). The Effect of Heat Stress on Wheat Leaf and Ear Photosynthesis. Technical
Report 174.

Börner, A., Schäfer, M., Schmidt, A., Grau, M., and Vorwald, J. (2005). Associations between
geographical origin and morphological characters in bread wheat ( Triticum aestivum L.)
. Plant Genetic Resources, 3(3):360–372.

Browning, B. and Browning, S. (2016). Genotype Imputation with Millions of Reference
Samples. The American Journal of Human Genetics, 98(1):116–126.

Butler, D. G., Cullis, B. R., Gilmour, A. R., Gogel, B. J., and Thompson, R. (2017). ASReml-R
Reference Manual Version 4.

DeWitt, N., Guedira, M., Lauer, E., Sarinelli, M., Tyagi, P., Fu, D., Hao, Q., Murphy, J. P., Mar-
shall, D., Akhunova, A., Jordan, K., Akhunov, E., and Brown-Guedira, G. (2020). Sequence-
based mapping identifies a candidate transcription repressor underlying awn suppres-
sion at the B1 locus in wheat. New Phytologist, 225(1):326–339.

Evans, L. T., Bingham, J., Jackson, P., and Sutherland, J. (1972). Effect of awns and drought
on the supply of photosynthate and its distribution within wheat ears. Annals of Applied
Biology, 70:67–76.

FAO (2020). Crop Prospects and Food Situation #1, March 2020. FAO.

Ferguson, H. (1975). Use of Variety Isogenes in Plant Water-Use Efficiency Studies. pages
25–29.

Foulkes, M. J., Sylvester-Bradley, R., Weightman, R., and Snape, J. W. (2007). Identifying
physiological traits associated with improved drought resistance in winter wheat. Field
Crops Research, 103(1):11–24.

Gauch, H. G. (1937). A Physiological Study of the Awns of Red Winter Wheat. PhD thesis,
Kansas State University.

153



Glaubitz, J. C., Casstevens, T. M., Lu, F., Harriman, J., Elshire, R. J., Sun, Q., and Buckler, E. S.
(2014). TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline. PLoS
ONE, 9(2):e90346.

Grundbacher, F. J. (1963). The Physiological Function of the Cereal Awn. pages 366–381.

Guedira, M. and Paulsen, G. M. (2002). Accumulation of starch in wheat grain under different
shoot/root temperatures during maturation. Functional Plant Biology, 29(4):495.

Hawker, J. and Jenner, C. (1993). High Temperature Affects the Activity of Enzymes in the
Committed Pathway of Starch Synthesis in Developing Wheat Endosperm. Functional
Plant Biology, 20(2):197.

Hickman, J. F. (1889). Experiments in wheat seeding; Comparative test of varieties of wheat.
Technical report, Ohio Agricultural Experiment Station.

Huang, D., Zheng, Q., Melchkart, T., Bekkaoui, Y., Konkin, D. J. F., Kagale, S., Martucci, M.,
You, F. M., Clarke, M., Adamski, N. M., Chinoy, C., Steed, A., McCartney, C. A., Cutler, A. J.,
Nicholson, P., and Feurtado, J. A. (2020). Dominant inhibition of awn development by a
putative zinc-finger transcriptional repressor expressed at the B1 locus in wheat. New
Phytologist, 225(1):340–355.

Kato, K., Miura, H., Akiyama, M., Kuroshima, M., and Sawada, S. (1998). RFLP mapping
of the three major genes, Vrn1, Q and B1, on the long arm of chromosome 5A of wheat.
Technical report.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and
Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics,
25(16):2078–2079.

Li, X., Wang, H., Li, H., Zhang, L., Teng, N., Lin, Q., Wang, J., Kuang, T., Li, Z., Li, B., Zhang,
A., and Lin, J. (2006). Awns play a dominant role in carbohydrate production during the
grain-filling stages in wheat (Triticum aestivum). Physiologia Plantarum, 127(4):701–709.

Martin, J. N., Carver, B. F., Hunger, R. M., and Cox, T. S. (2003). Contributions of Leaf Rust
Resistance and Awns to Agronomic and Grain Quality Performance in Winter Wheat.
Crop Science, 43:1712–1717.

Maydup, M. L., Antonietta, M., Graciano, C., Guiamet, J. J., and Tambussi, E. A. (2014). The
contribution of the awns of bread wheat (Triticum aestivum L.) to grain filling: Responses
to water deficit and the effects of awns on ear temperature and hydraulic conductance.
Field Crops Research, 167:102–111.

Motzo, R. and Giunta, F. (2002). Awnedness affects grain yield and kernel weight in near-
isogenic lines of durum wheat. Australian Journal of Agricultural Research, 53(12):1285–
1293.

154



Poland, J., Endelman, J., Dawson, J., Rutkoski, J., Wu, S., Manes, Y., Dreisigacker, S., Crossa,
J., Sánchez-Villeda, H., Sorrells, M., and Jannink, J. L. (2012). Genomic selection in wheat
breeding using genotyping-by-sequencing. Plant Genome, 5(3):103–113.

R Core Team (2021). R: A Language and Environment for Statistical Computing.

Rebetzke, G. J., Bonnett, D. G., and Reynolds, M. P. (2016). Awns reduce grain number to
increase grain size and harvestable yield in irrigated and rainfed spring wheat. Journal of
Experimental Botany, 67(9):2573–2586.

Sanchez-Bragado, R., Kim, J. W., Rivera-Amado, C., Molero, G., Araus, J. L., Savin, R., and
Slafer, G. A. (2020). Are awns truly relevant for wheat yields? A study of performance of
awned/awnless isogenic lines and their response to source–sink manipulations. Field
Crops Research, 254.

Sarinelli, J. M., Murphy, J. P., Tyagi, P., Holland, J. B., Johnson, J. W., Mergoum, M., Mason,
R. E., Babar, A., Harrison, S., Sutton, R., Griffey, C. A., and Brown-Guedira, G. (2019).
Training population selection and use of fixed effects to optimize genomic predictions in
a historical USA winter wheat panel. Theoretical and Applied Genetics, 132(4):1247–1261.

Sparks, A. (2018). nasapower: A NASA POWER Global Meteorology, Surface Solar Energy
and Climatology Data Client for R. Journal of Open Source Software, 3(30):1035.

Tambussi, E. A., Nogués, S., and Araus, J. L. (2005). Ear of durum wheat under water stress:
Water relations and photosynthetic metabolism. Planta, 221(3):446–458.

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of
Dairy Science, 91(11):4414–4423.

Vervelde, G. J. (1953). The agricultural value of awns in cereals. Netherlands Journal of
Agricultural Science, 1(1):2–10.

Watkins, A. E. and Ellerton, S. (1940). Variation and genetics of the awn in Triticum. Journal
of Genetics, 40(1-2):243–270.

Weyhrich, R. A., Carver, B. F., and Martin, B. C. (1995). Photosynthesis and Water-Use
Efficiency of Awned and Awnletted Near-Isogenic Lines of Hard Winter Wheat. Crop
Science, 35(1):172–176.

Weyhrich, R. A., Carver, B. F., and Smith, E. L. (1994). Effects of awn suppression on grain
yield and agronomic traits in hard red winter wheat. Crop Science, 34(4):965–969.

155


	List of Tables
	List of Figures
	Review of Literature
	A brief history of Wheat Domestication and Breeding
	The wheat family
	Wheat breeding in the US

	Wheat phenology
	Wheat growth and development
	Variation in major genes alter wheat phenology

	Prediction of phenotypes from genotypes
	Covariance between relatives and prediction
	Use of markers to track chromosomal segments
	Genomic prediction as a unifying framework

	Yield components
	The Yield Component Framework
	Exploring Yield Variation Effects through Yield Components

	References

	Characterizing the oligogenic architecture of plant growth phenotypes informs genomic selection approaches in a common wheat population
	Abstract
	Introduction
	Materials and Methods
	Population Development
	Phenotyping
	Analysis of Phenotypes
	Genotyping and Linkage Map Construction
	QTL Analysis
	Prediction of Phenotypes

	Results
	Genetic Map Construction
	Population Characterization
	Known Variants and Novel QTL Impact Plant Growth
	QTL with Major and Moderate Effects Explain Most of Additive Genetic Variation and Generate Transgressive Segregation
	QTL Models Out-Perform Genomic Selection for Oligogenic Traits
	Variation in plant growth is generated by major QTL

	Discussion
	Unexplained Parental phenotypes result from novel QTL
	The oligogenic trait architecture of plant growth traits in wheat
	Challenges and opportunities for genotype-based prediction of plant growth traits
	Plant growth QTL and variation for source traits

	Conclusions
	Competing interests
	Author's contributions
	Acknowledgements
	References

	A network modeling approach provides insights into the environment-specific yield architecture of wheat
	Abstract
	Introduction
	Materials and methods
	Population Development and Phenotyping
	Analysis of Phenotypes
	Network Modeling
	QTL Mapping
	Variance and Path Analysis

	Results and discussion
	Initial QTL Identification
	Network Mapping of Yield Component QTL Using SEM
	Path Analysis of Phenotypes
	Genetic architecture of spike yield
	Major plant height and heading date allele effects
	Major per-se yield component allele effects

	Conclusions
	Data availability
	Acknowledgments
	References

	Sequence based mapping identifies a candidate transcription repressor underlying awn suppression at the B1 locus in wheat
	Abstract
	Introduction
	Materials and Methods
	Genome Wide Association Analysis
	Bi-Parental Mapping Populations
	Analysis of Mutant Lines
	Identification of Haplotypes in Diverse Wheat Germplasm
	Sequencing the B1 region
	Gene Expression

	Results
	B1 awn suppression is associated with test weight, spikelets per spike and kernel weight
	Fine Mapping Identifies B1 Candidate Genes
	Characterization of B1 Candidate Gene TraesCS5A02G542800
	Up-regulation of TraesCS5A02G542800 is Associated with B1 Awn Suppression.
	Haploid Diversity in Global Wheat Germplasm

	Discussion
	Acknowledgements
	Author Contributions
	References

	Bearded or smooth? Awns improve yield when wheat experiences heat stress during grain fill
	Abstract
	Introduction
	Materials and Methods
	Phenotypic data
	Genotypic data
	Environmental data
	Testing and predicting weather effects

	Results and Discussion
	Population Structure of Programs
	Environmental factors relevant to awn yield effects
	Overall effect of awns on yield varies by environment, year, and germplasm

	Conclusions
	Competing interests
	Author's contributions
	Acknowledgements
	References


